2. 为避免符号出错,所得结果应先用加号连接,再进行化简.
让学生在交流的基础上思考下列问题:
(1)有那些方法计算大长方形的面积?试分别用代数式表示出来.
(2)所列代数式有何关系?
(3)这一结论与乘法分配律矛盾吗?
(4)根据以上探索你认为应如何进行单项式与多项式的乘法运算?
通过探索得:进而得出单项式乘多项式法则
单项式与多项式相乘,就是根据乘法分配律,用单项式乘多项式的每一项,再把所得的结果相加
法则说明:
1. 分清多项式的各项.
课前要求学生制作边长分别为、
,、,、的长方形,课堂上
由学生动手拼成大长方形,计算拼成的图形面积并交流做法.
2.作业:课本70页:第1、2、3题
教学素材:
A组题:
(1).2x2y.3xy2
(2) .4a2x5.(-3a3bx)
(3).5an+1b.(-2a)
(4).(a2c)2.6ab(c2)3
B组题:
(1).5an+1b.(-2a)
(2).(a2c)2.6ab(c2)3
1. 小结:(1)单项式乘单项式法则;
(2)运用时应注意什么?
3. 巩固练习
(1).2x2y.3xy2
(2) .4a2x5.(-3a3bx)
课本69页--70页:第1、2题
小结与作业
2.例题
计算:(1)a·(6ab);
(2)(2x)·(-3xy).
解: (1)a·(6ab)
= (×6)·(a·a)·b
= 2ab;(教师规范格式)
(2)(2x)·(-3xy).
= 8x·(-3xy)
= [8×(-3)](x·x)y
= -24xy.
小结:这节课你有何收获?
我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。
从整体上看,“电视墙”的面积为长方形的长与宽的积:3a·3b;
从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。
于是,我们有:3a·3b = 9ab.
新课讲解:
1.探索研究
一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?
请学生回答,教师加以总结归纳:
两个单项式3a与3b相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.
4ab·5b这两个单项式的积是20ab。
同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。
15.已知:,且 异号,是绝对值最小的负整数,,求3A·B-A·C的值.
14.某同学在计算一个多项式乘以-3x2时,因抄错符号,算成了加上-3x2,得到的答案是x2-0.5x+1,那么正确的计算结果是多少?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com