3. 巩固练习
(1).2x2y.3xy2
(2) .4a2x5.(-3a3bx)
课本69页--70页:第1、2题
小结与作业
2.例题
计算:(1)a·(6ab);
(2)(2x)·(-3xy).
解: (1)a·(6ab)
= (×6)·(a·a)·b
= 2ab;(教师规范格式)
(2)(2x)·(-3xy).
= 8x·(-3xy)
= [8×(-3)](x·x)y
= -24xy.
小结:这节课你有何收获?
我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。
从整体上看,“电视墙”的面积为长方形的长与宽的积:3a·3b;
从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。
于是,我们有:3a·3b = 9ab.
新课讲解:
1.探索研究
一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?
请学生回答,教师加以总结归纳:
两个单项式3a与3b相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.
4ab·5b这两个单项式的积是20ab。
同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。
16.探索发现:
(1)计算下列各式:
①(x-1)(x+1);②(x-1)(x2+x+1);③(x-1)(x3+x2+x+1).
(2)观察你所得到的结果,你发现了什么规律?并根据你的结论填空:(x-1)(xn+xn-1+xn-2+…+x+1)=_______(n为正整数).
15.对于任意自然数,试说明代数式n(n+7)-(n-3)(n-2)的值都能被6整除.
14.已知m,n满足│m+1│+(n-3)2=0,化简(x-m)(x-n)=_________.
13. 解方程:(x+3)(x-7)+8=(x+5)(x-1).
[能力提升]
12.若(mx+y)(x-y)=2x2+nxy-y2,求m,n的值.
11.计算:
⑴; ⑵;
⑶; ⑷;
⑸; ⑹;
10.要使成立,且M是一个多项式,N是一个整数,则( )
A. ; B. ;
C. ; D. .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com