0  206063  206071  206077  206081  206087  206089  206093  206099  206101  206107  206113  206117  206119  206123  206129  206131  206137  206141  206143  206147  206149  206153  206155  206157  206158  206159  206161  206162  206163  206165  206167  206171  206173  206177  206179  206183  206189  206191  206197  206201  206203  206207  206213  206219  206221  206227  206231  206233  206239  206243  206249  206257  447090 

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.

(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

试题详情

10.为了预防“非典”,某学校对教室采用药熏清毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:

    (1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.

    (2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

    (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

 

试题详情

9.如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于C、D两点,如果A点的坐标为(2,0),点C、D分别在第一、第三象限,且OA=OB= AC=BD,试求一次函数和反比例函数的解析式.

 

试题详情

8.如图,已知一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A、B两点, 且与反比例函数y= (m≠0)的图象的第一象限交于点C,CD垂直于x轴,垂足为D,若OA= OB=OD=1,求:

   (1)求点A、B、D的坐标.

(2)求一次函数和反比例函数的解析式。

试题详情

7.在ABCD中,AB=4cm,BC=1cm,E是CD边上一动点,AE、BC的延长线交于点F,设DE=x(cm),BF=y(cm).求y与x之间的函数关系式,并写出自变量x的取值范围; 画出此函数的图象.

试题详情

6.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点, 且点A的横坐标和点B的纵坐标都是-2,求:

   (1)一次函数的解析式;

(2)△AOB的面积.

试题详情

5.一定质量的氧气,它的密度P(kg/m3)是它的体积V( m3) 的反比例函数, 当V=10m3时,p=1.43kg/m3. (1)求p与V的函数关系式;(2)求当V=2m3时求氧气的密度p.

试题详情

4.已知力F所作的功是15焦,则力F与物体在力的方向上通过的距

离S的图象大致是如图中的(  )

试题详情

3.如图,点P是x轴上的一个动点,过点P作x轴的垂线PQ交双曲线于

点Q,连结OQ, 当点P沿x轴正半方向运动时,Rt△QOP面积(  )

  A.逐渐增大   B.逐渐减小     C.保持不变   D.无法确定

试题详情

2.如图,向高层建筑屋顶的水箱注水,水对水箱底部的压强P与水深h的函数关系的图象是(水箱能容纳的水的最大高度为H).

试题详情


同步练习册答案