9.3保险公司怎样才能不亏本
[教学目标]
见作业纸
4、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.
3、某地上年度电价为0.8元/度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.
(1)求y与x之间的函数关系式;
(2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]
2、一定质量的氧气,它的密度ρ (kg/m3)是它的体积V( m3) 的反比例函数, 当V=10m3时,ρ=1.43kg/m3. (1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.
1、见P92练习
例1、小明将一篇24000字的社会调查报告录入电脑,打印成文.
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(2)录入文字的速度v(字/min)与完成录入的时间t(min)有怎样的函数关系?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池.
(1) 蓄水池的底部S与其深度有怎样的函数关系?
(2) 如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
(3) 由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
活 动 内 容 |
师生互动思考与安排 |
一、已知一个长方体的体积是100cm3,它的长是y cm,宽是5cm,高是xcm. (1)写出用高表示长的函数关系式; (2)求出自变量x的取值范围; (3)当x=3时,求y的值. 二、一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3. (1)求ρ与V的函数关系式; (2)求当V=2m3时,氧气的密度ρ. [说明]此练习仅作练习之外的补充,仅供选用. |
|
活 动 内 容 |
师生互动思考与安排 |
(一)关于“速度、时间、……”相关的反比例函数应用 1、小明将一篇24000字的社会调查报告录入电脑,打印成文. (1)如果小明以每分钟120字的速度录入,他需要多长时间才能完成录入任务? (2)录入文字的速度v(字/min)与完成录入的时间t(min)有怎样的函数关系? (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字? [说明]引导学生积极思考、讨论、合作、交流,问题(1)直接可以让学生自己完成,列出关系式计算.问题(2),引导学生讨论工作总量一定了:24000个字,录入速度与时间相乘就是总量,即v·t=24000,通过变形,得到t=与y=比较,得到反比例函数的答案.问题(3)则可联系在研究一次函数、一元一次方程、一元一次不等式这三个“一次”关系时所讲的知识,知道一个变量求另外一个变量时,直接代入,变成解方程来解决;还有强调实际问题的取舍,如133.3个字,取134个字,要符合实际意义. |
|
活 动 内 容 |
师生互动思考与安排 |
(二)与“几何体积”相关的反比例函数应用 2、某自来水公司计划新建一个容积为4×1010m3的长方形蓄水池. (1)蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系? (2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米? (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数) [说明]这个例题鼓励学生积极思考、讨论、交流、回顾复习长方体体积公式,v=sh,通过公式的变式来解决问题(1),得到s=与y=进行类比,得到是反比例关系;问题(2)和问题(3)则都知道关系式中一个变量求另外一个变量,只需代入关系式计算出所求值即可,引导学生明白解决问题一定依靠关系式进行. |
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com