29.圆和圆的位置关系:(1)设两圆半径为R和r,圆心距为d,则:①d>R+r 两圆外离.
②d=R+r 两圆外切.③R-r<d<R+r(R≥r) 两圆相交.④d=R-r 两圆内切.
⑤d<R-r 两圆内含.
28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:
①d<r 直线L和⊙O相交.②d=r 直线L和⊙O相切.③d>r 直线L和⊙O相离.
(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.
(5)RtΔ的内切圆的半径R内= ,任意多边形的内切圆的半径R内= .
(6)圆外切四边形的一组对边的和等于另一组对边的和.
27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的
任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;
⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.
26.射影定理:如图3,ΔABC中,若∠ACB=900,
CD⊥AB,则:①AC2=AD·AB.②BC2=BD·BA.③AD2=DA·DB.
25.平行切割定理:①如图1,DE∥BC = .
②如图2,若AB∥CD∥EF则 = , = .
24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.
23.四边形:(1)n边形的内角和等于(n-2)1800,外角和等于3600.
(2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.
(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等.
③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.
(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.
(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.
(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.
(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.
(8)梯形的中位线平行于两底并且等于两底之和的一半.
(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.
22.三角形:(1)在一个三角形中:等边对等角,等角对等边.
(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在RtΔ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.
②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半.(6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.
21.锐角三角函数:①设∠A是RtΔ的任一锐角,则∠A的正弦:sinA= ,∠A的余弦:cosA= ,∠A的正切:tanA= ,∠A的余切:cotA= .
并且sinA=cosB,tgA=ctgB,tgActgA=1,sin2A+cos2A=1.0<sinA<1,0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A的正弦和正切值越大,余弦和余切值反而越小.
②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,tg(900-A)=ctgA,ctg(900-A)=tgA.
③特殊角的三角函数值:sin300=cos600= ,sin450=cos450= ,sin600=cos300= ,sin00=
cos900=0,sin900=cos00=1,tg300=ctg600= ,tg450=ctg450=1,tg600=ctg300= ,tg00=ctg900=0.
④斜坡的坡度i= = .设坡角为α,则i=tgα= .
20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.
(2)公式:设有n个数x1,x2,…,xn,那么:
①平均数 = (x1+x2+…+xn).②方差S2= [(x1- )2+(x2- )2+…+(xn- )2.( 是整数时用)
③S2= [(x12+x22+…+xn2)-n( )2].注:各数据的数位较少或平均数是分数时,用此公式.
④若将n个数x1,x2,…,xn各减去一个适当的数a,得到一组新数x1,,x2,,…,xn,,那么原来那组数的方差S2=这组新数的方差,平均数 =a+ ,.方差越大,这组数据的波动就越大.通常用样本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差
(3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾
法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总
个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com