3、教学预想:课堂是一个动态的过程,为使严谨的课堂更具弹性,我还做了其他准备,比如气象部门怎样计算得出降水概率,姚明参加NBA以来罚球数据的原始资料及分析等学生感兴趣的且与本节课相关的问题,以便适时的给学生拓宽知识,让学生更充分地感受到数学知识在生产、生活、娱乐、服务等方面的广泛应用。
2、教学理念上:始终贯彻以学生为中心的教育理念。关注学生的认知过程,重视学生的合作与讨论,随时发现、肯定学生的闪光点,让学生及时享受成功的愉悦。同时,结合学生暴露出的思想或方法上的问题,给予适时点拨。
1、教学内容上:我关注教材的变化,概率统计内容在新教材里地位得到加强,但也有一个逐步渗透学习的过程。
熟悉问题情境 激发学习动机
易误解的例子 加强概念理解
著名数学史料 延续求知热情
4、教学手段方面:利用多媒体技术,引用情境对话、制作电脑模拟试验,让学生感受信息技术为数学学习带来的方便,突出表现数学内在美。
3、为了突破难点--理解好频率与概率、随机性与规律性的关系,我采用小组讨论法和启发点拨法。
2、为了让学生把对随机事件的直觉思维过渡为理性认识,我采用实验探究法,并且分三步实施:分组试验、比较试验、模拟试验,让学生更清晰地看到随着试验次数的增加,频率趋于稳定,从而更好的理解概率意义,突出重点。
1、为了激活学生的课堂思维,体会随机现象特点,我采用情境激趣法,营造学习氛围。
4、变式训练 拓展提高
听两段情境对话,分组讨论对错并说明理由:
情境1):甲--我知道掷硬币时,“正面向上”的概率是0.5。
乙--噢,那我连掷硬币10次,一定会有5次正面向上。
2):甲--天气预报说明天降水概率为90%。
乙--我知道了,明天肯定会下雨,要不然就是天气预报不准。
对这两个情境,判断对与错并不难,难就难在如何准确的用概率知识理解。学生讨论时,教师深入各组,及时点拨,澄清学生可能存在的错误认识。
设计意图:情境1强调概率是针对大量试验而言的,大量试验反映的规律并非在每次试验中一定存在。情境2突出概率从数量上刻画了一个随机事件发生的可能性大小。用这两个情境使学生正确理解大量随机试验结果的规律性和每次试验结果的随机性,突破难点2。
3、形成概念 深化认识
一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p叫做事件A的概率,记作P(A)=p。其中m是事件A发生的频数,n是试验次数。
思考①:概率的取值范围是什么呢?
大部分学生能得出 0<p<1。教师预计到:只有少数同学可以想到p等于0和1,为给这部分同学表现的机会,教师要他们来解释:什么时候概率p等于0、1?这样,教师既完善了知识,又让这部分同学体验到思维严密的成就感,还激起其他同学的好胜心理。
思考②:定义中的“频率”和“概率”有何区别?
结合投币试验,同学知道各小组试验算出的频率不一定等于概率。区别就是:频率不一定等于概率,概率是频率趋于稳定的那个值。
你会求吗?
例:对某电视机厂生产的电视机进行抽样检测的数据如下:
抽取台数 |
50 |
100 |
200 |
300 |
500 |
1000 |
优等品数 |
45 |
92 |
192 |
285 |
478 |
954 |
频 率 |
0.90 |
0.92 |
0.96 |
0.95 |
0.96 |
0.95 |
1)计算表中优等品的频率(精确到0.01);
2)该厂生产的电视机优等品的概率是多少(精确到0.01)?
这个例题,是利用抽样检测这种大量重复试验,让学生先计算优等品的频率,然后观察频率稳定在哪个常数附近,从而选取这个常数作为优等品的概率。通过例题,使学生更具体地理解概率,巩固概率和频率的关系即频率不一定等于概率,比如频率有0.92、0.96,概率为0.95。突破难点1。同时也让学生看到进行大量重复试验是确定概率的一种方法。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com