4.通过求函数中自变量的取值范围使学生进一步理解函数概念.
3.使学生掌握关于解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值.
2.使学生理解求自变量的取值范围的两个依据.
1.使学生理解自变量的取值范围和函数值的意义.
变量与函数(二)
2.两个注意:①判断常量与变量看两个方面。②理解函数概念把握三点。
1.四个概念:常量与变量,函数与自变量。
2.写出矩形面积s(m?)与垂直于墙的一边长x(m)的关系式。并指出两式中的常量与变量,函数与自变量。
用长20米的篱笆围成一个矩形,则矩形的面积S与它一边的长x的关系是什么?
指导:1.篱笆的长等于矩形的周长;2.S与x的关系式,即用x的代数式表示S;3.表示矩形的面积,需先表示矩形一组邻边的长。
解题过程略。
变式练习:
用20m的篱笆围成矩形,使矩形一边靠墙,另三边用篱笆围成,
1.写出矩形面积s(m?)与平行于墙的一边长x(m)的关系式;
3. 图象法:如问题1的气温曲线图
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com