0  208526  208534  208540  208544  208550  208552  208556  208562  208564  208570  208576  208580  208582  208586  208592  208594  208600  208604  208606  208610  208612  208616  208618  208620  208621  208622  208624  208625  208626  208628  208630  208634  208636  208640  208642  208646  208652  208654  208660  208664  208666  208670  208676  208682  208684  208690  208694  208696  208702  208706  208712  208720  447090 

看上面问题的图,回答下列问题:

(1)小强让爷爷先上多少米?

(2)山顶离山脚的距离有多少米?谁先爬上山顶?

分析 (1)小强让爷爷先跑的路程,应该看表示爷爷的这条线段.由于从小强开始爬山时计时的,因此这时爷爷爬山所用时间是0,而x轴表示爬山所用时间,得x=0.可在线段上找到这一点A(如图).A点对应的函数值y=60.

(2) y轴表示离开山脚的距离,山顶离山脚的距离指的是离开山脚的最大距离,也就是函数值y取最大值.可分别在这两条线段上找到这两点BC(如图),过BC两点分别向x轴、y轴作垂线,可发现交y轴于同一点Q(因为两人爬的是同一座山), Q点的数值就是山顶离山脚的距离,分别交x轴于MNMN点的数值分别是小强和爷爷爬上山顶所用的时间,比较两值的大小就可判断出谁先爬上山顶.

解 (1)小强让爷爷先上60米;

(2)山顶离山脚的距离有300米,小强先爬上山顶.

归纳 在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标意义.如图中的点P(3,90),这一点表示小强爬山3分后,离开山脚的距离90米.再从图形中分析两变量的相互关系,寻找对应的现实情境.如图中的两条线段都可以看出随着自变量x的逐渐增大,函数值y也随着逐渐增大,再联系现实情境爬山所用时间越长,离开山脚的距离越大,当x达到最大值时,也就是到达山顶.

试题详情

问题 王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).

问 图中有一个直角坐标系,它的横轴(x轴)和纵轴(y轴)各表示什么?

答 横轴(x轴)表示两人爬山所用时间,纵轴(y轴)表示两人离开山脚的距离.

问 如图,线段上有一点P,则P的坐标是多少?表示的实际意义是什么?

P的坐标是(3,90).表示小强爬山3分后,离开山脚的距离90米.

我们能否从图象中看出其它信息呢?

试题详情

5.如图是一个围棋棋盘,我们可以用类似于直角坐标系的方法表示各个棋子的位置.例如,图中右下角的一个棋子可以表示为(12,十三).请至少说出图中四个棋子的“位置”.

试题详情

4.填空:

(1)点P(5,-3)关于x轴对称点的坐标是     

(2)点P(3,-5)关于y轴对称点的坐标是   

(3)点P(-2,-4)关于原点对称点的坐标是   

试题详情

3.指出下列各点所在的象限或坐标轴:

A(-3,-5),B(6,-7),C(0,-6),D(-3,5),E(4,0).

试题详情

2.在直角坐标系中描出下列各点,顺次用线段将这些点连起来,并将最后一点与第一点连起来,看看得到的是一个什么图形?

试题详情

1.判断下列说法是否正确:

(1)(2,3)和(3,2)表示同一点;

(2)点(-4,1)与点(4,-1)关于原点对称;

(3)坐标轴上的点的横坐标和纵坐标至少有一个为0;

(4)第一象限内的点的横坐标与纵坐标均为正数.

试题详情

4.分别关于x轴、y轴及原点的对称的两点坐标之间的关系.

试题详情

3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;第一、三象限角平分线上点的坐标特征;第二、四象限角平分线上点的坐标特征;

试题详情

2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法;

试题详情


同步练习册答案