0  208538  208546  208552  208556  208562  208564  208568  208574  208576  208582  208588  208592  208594  208598  208604  208606  208612  208616  208618  208622  208624  208628  208630  208632  208633  208634  208636  208637  208638  208640  208642  208646  208648  208652  208654  208658  208664  208666  208672  208676  208678  208682  208688  208694  208696  208702  208706  208708  208714  208718  208724  208732  447090 

3.要求出反比例函数的解析式,只要求出k即可.

试题详情

2.反比例函数的解析式又可以写成:( k是常数,k≠0).

试题详情

2.自变量的取值是x>0.

上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).

说明 1.反比例函数与正比例函数定义相比较,本质上,正比例ykx,即k是常数,且k≠0;反比例函数,则xykk是常数,且k≠0.可利用定义判断两个量xy满足哪一种比例关系.

试题详情

1.当矩形的面积一定时,矩形的一边是另一边的反比例函数.即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;

试题详情

2.自变量v的取值是v>0.

问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),求另一边的长y(米)与x的函数关系式.

分析 根据矩形面积可知

    xy=24,

即  

从这个关系中发现:

试题详情

问题1 小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了.假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系.

分析 和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式.

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时.因为在匀速运动中,时间=路程÷速度,所以

从这个关系式中发现:

1.路程一定时,时间t就是速度v的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.

试题详情

两个相关联的量,一个量变化,另一个量也随着变化,如果两个数的积一定,这两个数的关系叫做反比例关系.

试题详情

6、已知一次函数图象经过A(―2,―3)、B(1,3)两点。

(1)求这个一次函数的解析式;

(2)试判断点P(-1,1)是否在这个一次函数图象上?

试题详情

5、已知一次函数y=kx+b的图象经过点(-2,5)并且与y轴相交于点P,直线与y轴交于点Q,点Q与点P关于x轴对称,求这个一次函数的解析式。

试题详情

4、y与x+1成正比例,当x=5时,y=12,则y关于x的函数关系式是_______________。

试题详情


同步练习册答案