同学们通过量角或量线段计算之后,得出:△ADE∽△ABC。从已知条件看,△ADE与△ABC有一对应角相等,即∠A=∠A(是公共角),而一个条件是AD=AB,AE=AC,即是=,=;因此=。△ADE的两条边 AD、AE与△ABC的两条边AB、AC会对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验。观察图,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢?
图中两个三角形的一组对应边AD与AB的长度的比值为,将点E由点A开始在AC上移动,可以发现当AE=AC时,△ADE与△ABC相似。此时=
同学们画两个三角形,△ABC与△A′B′C′,使之∠A=∠A′,AB=2A′B′,AC=2A′C′,量一量BC与B′C′的长,计算BC:B′C′与同伴交流,是否与,相等?再量一量∠B与∠B′、∠C与∠C′,它们是否对应相等呢?这样的两个三角形相似吗?
于是有识别两个三角形相似的第二种简便方法:
如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。简单地说;两边对应成比例且夹角相等,两三角形相似。
强调对应相等的角必须是成比例的边的夹角,如果不是夹角,它们不一定会相似。你能画出有两边会对应成比例,有一个角相等,但它们不相似的两个三角形吗?(画顶角与底角相等的两个等腰三角形)∠B=∠B′,=
例题:
1.(课本中例3)判断图中△AEB与△FEC是否相似?
2.如图△ABC中,D、E是AB、AC上三等分点(即AD=AB,AE=AC),那么△ADE与△ABC相似吗?你用的是哪一种方法?
由于没有两个角对应相等,同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。
1.现在要判断两个三角形相似有哪几种方法?
有两种方法,(1)是根据定义;(2)是有两个角对应相等的两个三角形相似.
2.能依据条件,灵活运用三种识别方法,正确判断两个三角形相似。
教学过程
P81 1、3、5
第二课时 相似三角形的识别(二)
教学目标
1.会说出识别两个三角形相似的方法:有两边对应成比例,且夹角相等的两个三角形相似;三条边对应成比例的两个三角形相似.
本节课我们学习了识别两个三角形相似的简便方法:有两个角对应相等的两,个三角形相似。
2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC会相似,你怎样画这条直线,并说明理由。和你的同伴交流作法是否一样?
1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形。
3.如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC。
2.在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com