0  208643  208651  208657  208661  208667  208669  208673  208679  208681  208687  208693  208697  208699  208703  208709  208711  208717  208721  208723  208727  208729  208733  208735  208737  208738  208739  208741  208742  208743  208745  208747  208751  208753  208757  208759  208763  208769  208771  208777  208781  208783  208787  208793  208799  208801  208807  208811  208813  208819  208823  208829  208837  447090 

2.如图2(1),是小红用硬纸板做成的两个全等的直角三角形,两直角边的长分别为ab,斜边长为c,如图2(2)是以c为直角边的等腰直角三角形,她想将它们拼成一个能证明勾股定理的图形,可以吗?

(1)如果能,请你画出拼成的这个图形的示意图,写出它是什么图形?

(2)用这个图形证明勾股定理.

(3)假设图2(1)中的图有若干个,你能运用(1)中所示的直角三角形拼出另一个能证明勾股定理的图形吗?请画出拼后的示意图.(无需证明)

试题详情

如图7所示,仔细观察图形,认真分析各式,然后解答问题:

,……

(1)请用含n(n是正整数)的等式表示上述变化规律;

(2)求出S12+S22+S32+S42+S52+…+S102的值.

1.如图1,一牧童在A处牧马,牧童家在B处,AB处距河岸的距离ACBD的长分别为500米和700米,且CD=500米,天黑前牧童从A点将马牵到河边去饮水后,再赶回家,那么牧童最少要走多少米?

试题详情

4.(12分)八(1)班学生准备测量校园人工湖的深度,他们把一根竹杆插到离湖边1米远的水底,只见竹杆高出水面0.2米,把竹杆的顶端拉向湖边(底端没动),杆顶和湖沿的水面刚为平齐,求湖水的深度和竹杆的长?(设竹竿一端刚好和湖底接触)

试题详情

3.(12分)已知等腰三角形的底边为2,面积为2,求其腰长.

试题详情

2.(10分)如图6所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗?试试吧,相信你一定能行.

试题详情

1.(10分)如图5,四边形ABCD中,∠BAD=90°,∠DBC=90°,AD=3,AB=4,BC=12,求CD的长.

试题详情

6.小明用电脑把四个全等的直角三角形拼成了一个大正方形如图4所示,如果大正方形的面积为13,中间小正方形的面积为1,直角三角形的短直角边长为a,较长直角边为b,那么(a+b)2的值为(   )

A.13       B.19       C.25       D.169

试题详情

5.如图3,在△ABC中,ADBCDAB=3,BD=2,DC=1,则AC=(   )

A.4        B.     C.     D.4

试题详情

4.如图2,为修铁路需凿通隧道AC,测得∠B=20°,∠A=70°,AB=130m,BC=120m,若每天凿隧道5m,则把隧道凿通需(   )

A.10天     B.9天      C.8天     D.11天

试题详情

3.在Rt△ABC中,∠C=90°,AC=3,BC=4,则斜边上的高CD的长为(   )

A.      B.       C.      D.

试题详情


同步练习册答案