0  208689  208697  208703  208707  208713  208715  208719  208725  208727  208733  208739  208743  208745  208749  208755  208757  208763  208767  208769  208773  208775  208779  208781  208783  208784  208785  208787  208788  208789  208791  208793  208797  208799  208803  208805  208809  208815  208817  208823  208827  208829  208833  208839  208845  208847  208853  208857  208859  208865  208869  208875  208883  447090 

3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.

试题详情

2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.

试题详情

1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为(  ).

(A)12cm     (B)10cm      (C)7.5cm      (D)5cm  

试题详情

3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.

试题详情

2.(选择)

(1)下列说法错误的是(   ).

(A)矩形的对角线互相平分      (B)矩形的对角线相等

(C)有一个角是直角的四边形是矩形  (D)有一个角是直角的平行四边形叫做矩形

(2)矩形的对角线把矩形分成的三角形中全等三角形一共有(   ).

(A)2对  (B)4对  (C)6对  (D)8对

试题详情

1.(填空)

(1)矩形的定义中有两个条件:一是        ,二是        

(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为                   

(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为     cm,     cm,     cm,     cm.

试题详情

   例1 (教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.

分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.

解:∵ 四边形ABCD是矩形,

∴ AC与BD相等且互相平分.

∴ OA=OB.

又  ∠AOB=60°,

∴  △OAB是等边三角形.

∴  矩形的对角线长AC=BD = 2OA=2×4=8(cm).

 例2(补充)已知:如图 ,矩形 ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.

分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.

略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:,解得x=6. 则 AD=6cm.

(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB= AD×AB,解得 AE= 4.8cm.

 例3(补充) 已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC. 求证:CE=EF.

   分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.

   证明:∵  四边形ABCD是矩形,

∴  ∠B=90°,且AD∥BC.  ∴  ∠1=∠2.

∵  DF⊥AE,  ∴  ∠AFD=90°.

 ∴  ∠B=∠AFD.又 AD=AE,

∴  △ABE≌△DFA(AAS).

∴  AF=BE.

∴  EF=EC.

   此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.

试题详情

3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.

矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).

矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.

[探究]在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.

① 随着∠α的变化,两条对角线的长度分别是怎样变化的?

② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?

操作,思考、交流、归纳后得到矩形的性质.

矩形性质1  矩形的四个角都是直角.

矩形性质2  矩形的对角线相等.

   如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.

试题详情

2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)

试题详情

1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?

试题详情


同步练习册答案