1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.
学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?
正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:
(1)有一组邻边相等的平行四边形 (菱形)
(2)有一个角是直角的平行四边形 (矩形)
本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:
①对角线相等的菱形是正方形吗?为什么?
②对角线互相垂直的矩形是正方形吗?为什么?
③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?
④能说“四条边都相等的四边形是正方形”吗?为什么?
⑤说“四个角相等的四边形是正方形”对吗?
3.难点的突破方法:
本节的主要内容是正方形概念、性质和判定方法.重点是正方形定义.
正方形学生在小学阶段已有初步了解,生活中应用很广,其时正方形不仅是特殊的平行四边形,而且是特殊的矩形,和特殊的菱形,学好正方形有助于巩固矩形、菱形各自特有的性质和判定.
学生在小学学过了正方形,他们知道正方形的四个角都是直角,四条边相等,正方形的面积等于它的边长的平方,本节课的教学是加深学生的理论认识,拓宽学生的知识面,如何使学生理解为什么正方形的四个角都是直角,四条边相等,拓宽了正方形对角线性质的知识.在教学中可以让学生动手从一张矩形纸中折出一个正方形,培养学生实践能力.另外,通过对正方形定义和性质的讲解,培养学生类比思想、归纳思想、转化思想和隔离方法.
(1)掌握正方形定义是学好本节的关键.正方形是在平行四边形的前提下定义的,它包含两层意思:
①有一组邻边相等的平行四边形 (菱形)
②有一个角是直角的平行四边形 (矩形)
正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的菱形.教学时要结合教科书中P110中的图19.2-14,具体说明正方形与矩形、菱形的关系.这些关系是教学的一个难点,也是教学内容的重点和关键,要结合图形或者教具,或用简单的集合关系图,使学生把正方形与平行四边形、矩形、菱形的关系搞清楚.这些概念重叠交错,不易搞清楚,在教学这些内容时进度可稍放慢些.
(2)因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们性质的综合,不仅有平行四边形的所有性质,也有矩形和菱形的特殊性质,所以讲正方形性质的关键是在复习矩形、菱形的基础上进行总结.可以将正方形的性质总结如下:
边:对边平行,四边相等;
角:四个角都是直角;
对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.
还要让学生注意到:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.要使学生熟悉这些最基本的内容.
(3)对于怎样判定一个四边形是正方形,因为层次比较多,不必分析的太具体,只要强调能判定一个四边形是矩形,又能判定这个矩形也是菱形,或者先判定四边形是菱形,再判定这个菱形也是矩形,就可以判定这个四边形是正方形,实际上就是根据正方形定义来判定.
(4)正方形的性质和判定是本大节讲的平行四边形、菱形、矩形的性质与判定的综合.可以通过本节的教学总结、归纳前面所学的内容.还可以通过本节的教学,澄清学生存在的一些模糊概念.
2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.
1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.
2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.
1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.
19.2.3 正方形
3.做一做:
设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.
2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com