0  209016  209024  209030  209034  209040  209042  209046  209052  209054  209060  209066  209070  209072  209076  209082  209084  209090  209094  209096  209100  209102  209106  209108  209110  209111  209112  209114  209115  209116  209118  209120  209124  209126  209130  209132  209136  209142  209144  209150  209154  209156  209160  209166  209172  209174  209180  209184  209186  209192  209196  209202  209210  447090 

27、改革开放以来,某镇通过多种途径发展地方经济,1995年该镇年国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平。

(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?

(2)设以2001年为第一年,该镇第x年的国民生产总值为y亿元,y与x之间的关系是y=(x≥0)该镇那一年的国民生产总值可在1995年的基础上翻两番(即达到1995年的年国民生产总值的4倍)?

试题详情

26、汽车在行驶中,由于惯力作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”,刹车距离是分析事故的一个重要因素,在一个限速40乙内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了,事后现场测量甲车的刹车距离为12m,乙车的刹车距离超过10m,但小于20m,查有关资料知,甲种车的刹车距离S(m)与车速x()之间有下列关系,S=0.1x+0.01x2,乙种车的刹车距离S(m)与车速x()的关系如下图表示,请你就两车的速度方面分析相碰的原因。

  .

试题详情

25、如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。

(1)在如图的坐标系中求抛物线的解析式。

(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?

 

试题详情

24、2000年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2001年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)

(1)求2001年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系。

(2)该厂要是2001年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?

试题详情

23、已知二次函数yx2+bx+c的图像与x轴的两个交点的横坐标分别为x1x2,一元二次方程x2+b2x+20=0的两实根为x3x4,且x2x3x1x4=3,求二次函数的解析式,并写出顶点坐标。

试题详情

23、抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-3)2+4关于原点对称,则L+k=________。

试题详情

22、炮弹从炮口射出后,飞行的高度h(m)与飞行的时间t(s)之间的函数关系是h=v0tsinα-5t2,其中v0是炮弹发射的初速度, α是炮弹的发射角,当v0=300(), sinα=时,炮弹飞行的最大高度是___________。

试题详情

21、已知二次函数y=x2+bx+c的图像过点A(c,0),且关于直线x=2对称,则这个二次函数的解析式可能是_____________________________________.(只要写出一个可能的解析式)

试题详情

20、老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:

甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。

丙:当x<2时,y随x的增大而减小。丁:当x<2时,y>0,

已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数___________________

试题详情

19、如图(5),A、B、C是二次函数y=ax2+bx+c(a≠0)的图像上三点,根据图中给出的三点的位置,可得a_______0,c________0, ⊿________0.

试题详情


同步练习册答案