[生]垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
[师]这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分.每个定理都是一个命题,每个命题都有条件和结论.在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等).在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等).从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理.下面我们就用一些具体例子来区别它们.
(投影片B)
1.如图(1),在⊙O中,AB、AC为互相垂直的两条相等的弦,OD⊥AB,OE⊥AC,D、E为垂足,则四边形ADOE是正方形吗?请说明理由.
[生]圆是平面上到定点的距离等于定长的所有点组成的图形.定点为圆心,定长为半径.
圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具有旋转不变性.
[师]圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?
[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径.把车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳.如果车轮不是圆形,坐在车上的人会觉得非常颠.
4. 如图,⊙O的半径OC与直径AB垂直,点P在OB上运动(点O、B除外),CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.
(1)求证:ED是⊙O的切线;
(2)当OC=2,ED=2时,求∠E的正切值tanE和图中阴影部分的面积.
3. 如图,OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE;
(1)若将图(a)中的半径OB所在的直线向上平移交OA于F,交⊙O于B',其他条件不变(如图(b)),那么上述结论CD=CE还成立吗?为什么?
(2)若将图(a)中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变(如图(c)),那么上述结论CD=CE还成立吗?为什么?
2. 如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为弧BF的中点,BF交AD于E,且,AD=6,
(1)求证:AE=BE;
(2)求DE的长;
(3)求BD的长.
1. 已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD,请你仔细观察后回答:图中共有几个等腰三角形?把它们分别写出来,并说明你的理由.
5. 如图,四边形ABCD是正方形,曲线叫做“正方形的渐开线”,其中弧
、弧
、弧
、弧
…的圆心依次按A、B、C、D循环,它依次连接,取AB=1,则曲线
的长是___________.
4. 把一个半径为12厘米的圆片,剪去一个圆心角为120°的扇形后,用剩下的部分做成一个圆锥侧面,那么这个圆锥的侧面积是___________.
3. 在RtΔABC,斜边AB=13cm,BC=12cm,以AB的中点O为圆心,2.5cm为半径画圆,则直线BC和⊙O的位置关系是________________.
2. 如图在⊙O中,直径AB⊥弦CD,垂足为P,∠BAD=30°,则∠AOC的度数是________度.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com