1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )
A. 6 B. 4.5 C. 2.4 D. 8
25.(12分)台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220km的B处有一台风中心.其中心最大风力为12级,每离台风中心20km,风力就会减弱一级,该台风中心现在正以15km/h的速度沿北偏东30°方向往C移动,且台风中心风力不变,如图14-10,若城市所受风力达到或超过4级,则称为受台风影响.
(1)该城市是否会受到这次台风的影响?请说明理由;
(2)若会受台风影响,那么台风影响该城市的持续时间有多长?该城市受到台风影响的最大风力为几级?
24.(12分)清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;第三步:分别用3、4、5乘以k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
23.(8分)古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.
22.(10分)如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?
21.(8分)如图所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.
19.(8分)已知一个矩形的两邻边之比为3:4,且周长为42cm,求矩形的对角线长.20.(8分)求图中字母所代表的正方形面积.
18.已知Rt△ABC中,∠C=90°,若a+b=14,c=10,则Rt△ABC的面积是_______.
17.有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是_________cm.
16.能够成为直角三角形三条边长的三个正整数,称为勾股数,试写出两种勾股数_______.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com