1.12,8,6 2.矩形,扇形,矩形
28.(本题6分)灯塔A在灯塔B的南偏东60°方向上,A、B相距30海里,轮船C在B的正南方向,在灯塔A的南偏西60°方向上,通过画图(用1个单位代表10海里)确定轮船C的位置,求∠BAC和∠ACB的度数,并求出轮船C与灯塔B的距离.
第四章图形认识初步自主学习达标检测
27.根据题意填空:((1)-(2)每小问1分,(3)每小问2分,共6分)
(1)l1与l2是同一平面内两条相交直线,他们有一个交点,如果在这个平面内,再画第三条直线l3,那么这三条直线最多有 ____________个交点.
(2)如果在(1)的基础上在这个平面内再画第四条直线l4,那么这四条直线最多可有______________个交点.
(3)由(1)(2)我们可以猜想:在同一平面内,6条直线最多可有_________个交点,n(n>1)条直线最多可有__________条交点.(用含有n的代数式表示)
26.(本题6分)如图,(1)已知∠AOB为直角,∠AOC为锐角,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数;
(2)若将(1)中的条件“∠AOB为直角”改为“∠AOB为任意一个角”,则∠AOB与∠EOF的大小关系如何?发现结论并说明理由.
25.(本题6分)已知,的余角的3倍等于的补角,求、的度数.
24.(本题6分)已知:如图,点C是线段AB上一点,且3AC=2AB.D是AB的中点,E是CB的中点,DE=6,求:(1)AB的长 ;(2)求AD:CB.
23.(本题4分)AB是一段火车行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制几种车票?
22.(本题4分)如图,,D为AC的中点,,求AB的长.
21.(本题6分)如图,直线AB与CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°.
求:(1)∠BOE的度数;
(2)∠AOC的度数.
20.(本题4分)如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,OF⊥AB.则
(1)∠AOC的补角是 ;
(2) 是∠AOC的余角;
(3)∠DOC的余角是 ;
(4)∠COF的补角是 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com