已知矩阵P=,Q=,若矩阵PQ对应的变换把直线变为直线,求、的值.
21.本题有⑴、⑵、⑶三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)(本小题满分7分)选修4-2:矩阵与变换
(Ⅰ)求的极值; (Ⅱ) 函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
20.(本小题满分14分)若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,(其中为自然对数的底数).
19.(本题满分13分) 已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合. (Ⅰ)求抛物线D的方程; (Ⅱ)已知动直线过点P(4,0),交抛物线D于A、B两点,坐标原点O为线段PQ中点,求证:;(Ⅲ)是否存在垂直于轴的直线被以AP为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.
(II)设一周内有数学作业的天数为,求随机变量的分布列和数学期望。
根据上表:(I)求周五没有语文、数学、外语三科作业的概率;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com