0  21648  21656  21662  21666  21672  21674  21678  21684  21686  21692  21698  21702  21704  21708  21714  21716  21722  21726  21728  21732  21734  21738  21740  21742  21743  21744  21746  21747  21748  21750  21752  21756  21758  21762  21764  21768  21774  21776  21782  21786  21788  21792  21798  21804  21806  21812  21816  21818  21824  21828  21834  21842  447090 

抛物线C卜的点P(4.4),经抛物线C反射后,反射光线经过焦点

F后射向抛物线C上的点Q,再经抛物线C反射后又沿平行于X

轴的方向射出,途中经直线l:2x-4y-17=0上点N反射后又射回点M。

(1)求抛物线C的方程;

(2)求PQ的长度;

(3)判断四边形MPQN是否为平行四边形,若是请给出证明,若不是请说明理由。

 

 

试题详情

经抛物线反象后,沿平行于抛物线对称轴的肖向射出,反之亦然。

如图所示,今有抛物线C,其顶点是坐标原点,对称辅为x轴。开

口向右。一光源在点M处,由其发出一条平行于x轴的光线射向

试题详情

18.(本小题满分14分)抛物线有光学性质:由其焦点射出的光线

试题详情

       (2)设cn=,求数列{cn)的前n项和Tn

 

试题详情

17.(本小题满分14分)设数列{an}的前n项和为Sn=2n+1-2,{bn }是公差不为0的等差数列,             其中b2、b4、b9依次成等比数列,且a2=b2

       (1)求数列{an }和{bn}的通项公式:

 

试题详情

AB、CD的中点

(1)求证:DlE⊥平面ABlF;

(2)求直线AB与平面ABlF所成的角

(3)求二面角A-B1F-B的大小。

 

 

试题详情

16.(本小题满分14分)长方体ABCD-A1BlClD1中,AB=2,AD=1,AA1=,E、F分别是

试题详情

    (2) 求直线ax+by+5=0与圆 = 1相切的概率。

试题详情

15.(本小题满分12分)先后2次抛掷一枚质地均匀的骰子,将得到的点数分别记为a,b.

    (1) 求a+b=7的概率;

试题详情

②我们把由半椭圆C1+=1 (x≤0)与半椭圆C2+=1 (x≥0)合成的曲线称作“果圆”,其中=+,a>0,b>c>0

    如右上图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y

轴的交点,若△F0 F1 F2是边长为1的等边三角形,则上述“果圆”的面积为:

第Ⅱ卷 解答题 共80分

试题详情


同步练习册答案