23. 如图所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求异面直线PC与BD所成的角;
(2)在线段PB上是否存在一点E,使PC⊥平面ADE?
若存在,确定E点的位置;若不存在,说明理由.
数字的概率是多少?
(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的张卡片都写有
分布列及的数学期望;
(1)如果从甲、乙箱中各取一张卡片,设取出的张卡片上数字之积为,求的
22. 有甲、乙两个箱子,甲箱中有张卡片,其中张写有数字,张写有数字,张写有数字;乙箱中也有张卡片,其中张写有数字,张写有数字,张写有数字.
求证:
【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.
已知是不相等的正实数,
求圆被直线(是参数截得的弦长.
D.选修4―5 不等式证明选讲
(2)求矩阵的特征值及其对应的特征向量.
|