2.概述自然选择学说,形成生物进化的基本观点。
能力目标
培养学生收集、分析资料的能力。
情感目标
通过对达尔文的故事的学习,培养学生尊重客观事实,热爱科学,献身科学的态度。
●教学重点
1.了解达尔文及他的进化思想。
4.遗传变异在群体中的保存
遗传变异产生后,在当时的环境中通常并不适宜。那么为什么这些变异没有被淘汰呢?这便需要讨论它们在群体中的保存问题。关于这点,有如下几种解释:
(1)杂种优势
认为杂合体(Aa)的生存和繁殖较纯合体(AA或aa)更有利,因此等位基因A或a就不会被排除。这种机制最明显的例子,便是我们前面提到过的镰刀型血红蛋白贫血症。如前所述,这种遗传病是由于血红蛋白突变引起的。这类疾病盛行于赤道非洲和中东地区。既然病者细胞基因(s)(它的等位基因可写作S)明显不利,为什么在上述地区的有关基因的杂合子(Ss)可以相当高(高达30%-40%)呢?原来这种杂合体对该地区的重要致命疾病--疟疾具有抵抗力。这是因为杂合型个体Ss的红细胞容易形成狭小的镰刀形状,不利于疟原虫寄生,因此不怕疟疾侵袭。也就是说,在恶性疟病流行区,正常的纯合体(SS)容易死于疟病;贫血症纯合体(ss),死于贫血;杂合体(Ss)则能健康生存。它们的这种优势即称杂种优势(heterosis,hybrid vigor)。某些生物正是凭着这种方式使许多变异保存于种群的基因库中。
(2)多样化选择
假如一物种面临多种复杂环境,那么突变和选择会使基因库发生分化,于是有许多变异型或等位基因可适应不同的小环境。近期的研究表明,由不同的等位基因所编码的变异酶,其催化效率、对温度和酸碱的敏感性以及对其他环境因素的反应都不相同,从而使它们变得易受自然所选择。例如,果蝇(Drosophila melanegaster)生长在较温暖地区,种群中会出现较多的乙醇脱氢酶的变异体,它们比生长在较寒冷地区的种群更能抗热。总之,生长在较复杂环境里的种群,可通过多样化选择,保持较高的变异性。
(3)频率相依选择
这是一种保持复等位基因的机制,认为等位基因在种群中的频率受环境变化而有波动。当它们不适合环境时,高的频率会很快减少,但达到某一最低点时其频率就趋向稳定而不再下降,也就是说,环境压力无法对低频率的变异体发生作用,因此有些变异就可得到保留。
总之,群体中的遗传变异为生物进化提供大量的机会,每当出现新的恶劣环境时,如气候变坏、捕食者入侵、竞争者迁入或人为的污染,生物群体往往都有一定的适应能力,这早已成为现实。
第二课时
●教学目标
知识目标
3.基因重组
基因重组(gene recombination)是通过有性过程实现的。我们已知,任何一个基因的表型效应不仅决定于基因本身,还决定于基因之间的相互作用。因此,通过有性过程所实现的基因重组,虽然不改变基因本身,但新的组合可导致新的表型。在有性过程中,由于亲本具有杂合性(hybridity),由此而发生的遗传基础的重组合,就会产生丰富的遗传变异。这也就是为什么有性生殖比无性生殖具有优越性的原因?
(1)基因重组的分类
连锁互换 这类重组是同源染色体基因相互交换所发生的重新组合。它是较为稳定的重组。
自由组合 由它所形成的重组是不同对染色体的随机组合。
转座因子改变位置 细胞中能改变自身位置的一段DNA序列称转座因子(transposable element)。它从染色体一个位置转移到另一位置,或者从质粒转移到染色体上,从而产生变异。第一个转座因子是麦卡林托克(B. McClintock,1951)从玉米中发现的,她认为遗传基因可以转移,从染色体的一个位置跳到另一个位置,所以转座因子也称跳跃基因(jumping gene)。转座因子还具有控制其他基因开闭的作用,因为当它们插入某些基因,如影响玉米籽粒颜色的基因附近时,能在玉米籽粒发育期间改变其颜色图型,所以转座因子又可称为控制因子(controlling element)。目前已很清楚,原核生物和真核生物中都具有转座因子,例如多种细菌质粒、大肠杆菌、啤酒酵母(Saccharomyces cerevisiae)、果蝇等。这方面的材料可能与物种形成关系较大。
(2)基因重组与变异多样性
基因重组而引起变异的多样性,可以自由组合为例。一对等位基因可能形成的基因型是3种(31):
AA Aa aa
2对等位基因可以产生的基因型是9种(32):
AABB AABb AAbb AaBB AaBb aaBB aaBb Aabb aabb
根据3n,如有10对等位基因,那么就可得到310=59049种重组的基因型。其中有210个是纯合型,其余全部是杂合型。如果考虑到复等位基因的存在,那么多样性就更丰富了。而且自然界里的植物和动物,除少数例外都有,少则上百个或上千个,多则上百万个基因。由此不难设想,杂交产生的个体间为什么没有两个完全相同的个体,以及由杂交产生后代的生物类群间为什么是多种多样的道理。
此外,还有细胞质基因突变。细胞质里也有遗传物质,如线粒体、叶绿体中各有自己的染色体和DNA,它们控制着细胞器的正常结构和功能。这些基因也和核内遗传物质一样,能发生突变,导致遗传变异。例如,某些植物的叶绿体基因突变,就会出现一系列的突变型。酵母菌中某些线粒体基因发生突变,影响有氧呼吸功能,也能产生一些小菌落突变型。这些突变型在一定条件下,都能正常生活,传留后代。
细胞质突变引起的遗传变异与细胞核相比虽然要少得多,但它有自己的连续性和相对自主性。这也是值得注意的一种机制。
2.染色体突变
染色体突变(chromosomal aberration)也称染色体畸变或异常。它是指染色体数目、大小和结构的改变。染色体突变和基因突变一样,也是产生遗传变异的重要原因。
基因突变大都是DNA分子上碱基的变化,染色体突变则是整个DNA分子在较大范围内的变化,也就是说它有许多基因参与。因此,对生物表型变异的影响也较大。例如,德弗里斯(H.de Vries)关于月见草(Oenothera odorata)显著变异的著名试验,就是由染色体突变所引起的。基因突变通常发生在遗传物质复制的过程中,染色体突变一般发生在细胞核分裂的过程中,特别是减数分裂期间。
不同生物的染色体在数目、大小和结构上都不相同。例如马蛔虫(Parasaris univalens)有1对染色体,蝶(Lysandra atlantied)大约有220对,有些羊齿类植物(如羊齿草(Ophiaglossum reticulatum))则超过600对。但染色体数目的多少与生物的亲缘程度无直接联系。同样的哺乳类,袋鼠是11对,而狗则是39对。
(1)染色体结构的变化
缺失 染色体上丢失一个片段(图1),也即是一个或几个基因的丢失。一般认为,缺水部分如果较大,个体不能成活。最早证明染色体突变的证据是缺失,如布里奇斯(C. B. Bridges,1917)通过果腹果蝇获得缺刻翅的表型。一种称人类的猫叫综合征(Cridu?chat syndrom)就是第5染色体短臂的杂合缺失所致。此病的特征是小头、严重的生长异常和智力呆滞。患者通常不能活到成年。人类其他染色体如第4、13和18上的杂合缺失,也都伴有生理和智力上的缺陷。
重复 即染色体的某些片段有所增加(重复)。基因重复对个体生活影响不大或无影响,但在进化上可能有重要作用。
倒位 即染色体内部结构的顺序发生颠倒。倒位不改变染色体及其上面基因的数目。假如一条染色体上基因的顺序是ABCDEF,BCD片段的倒位就在染色体上形成ADCBEF的顺序(图2)。臂间倒位的片段包括着丝粒,臂内倒位则不包括。
易位 即非同源的染色体片段出现了交换。这种染色体片段的交换称相互易位,如一个片段移动到同一染色体的新位置上,或不同染色体上。如不出现相互交换称非相互易位,有时也称转位。
(2)染色体数目的变化 有些变化不改变遗传物质的总量(融合和断裂)(图3);有些则在总量上有所改变(非整倍体、单倍体和多倍体)(图4)。
着丝粒融合 即两条非同源染色体的整个或大部分合并成一条,丢去一个着丝粒,染色体数目也为此而减少。
着丝粒断裂 即一条染色体断成两段,它必须产生出一个新的着丝粒,否则细胞分裂时会丢失没有着丝粒的那条染色体。
非整倍体 即一套正常的染色体中丢失或增加一条或数条染色体。如缺失、单体、三体和四体等等。其中所谓三体即额外增加的一条染色体。人类的第一例非整倍性,即证明唐氏(Down)综合征病人是第21染色体三体。21三体综合症又称先天愚型,此病的原因即在21号染色体上多一条。
单倍体和多倍体 二倍体(2n)细胞的某同源染色体只有1个(2n-1)或在3个以上的现象。假如有3套染色体即称三倍体,4套者称四倍体,依此类推。多倍体较普遍的形式是染色体的套数乘2,也即四倍体、六倍体、八倍体,它们分别有4套、6套、8套染色体。
多倍体在某些植物群中很普遍,动物中则较少见。
1.保护色、拟态和警戒色
(1)保护色
有些动物之所以不容易被发现,是因为它的体色与环境的色彩很相似。动物适应栖息环境而具有的与环境色彩相似的体色,叫做保护色。保护色对于动物躲避敌害或猎捕其他动物都是有利的。具有保护色的动物有很多。例如,大多数昆虫的体色往往与它们所处环境中的枯叶、绿叶、树皮、土壤等物体的色彩非常相似。生活在绿色草地和池塘中的青蛙,背部是绿色的,活动在山间溪流石块上的棘胸蛙却是深褐色的,而树蛙则随着它所栖息的树种不同而具有不同的体色。生活在北极地区的北极狐和白熊,毛是纯白色的,与冰天雪地的环境色彩协调一致,这有利于它们捕食动物。
有些动物在不同的季节具有不同的保护色。例如,生活在寒带的雷鸟,在白雪皑皑的冬天,体表的羽毛是纯白色的,一到夏天就换上棕褐色的羽毛,与夏季苔原的斑驳色彩很相近。有些蝗虫在夏天草木繁盛时体色是绿色的,到了秋末则变为黄褐色。
(2)警戒色
某种蛾类幼虫的体表色彩鲜艳,有斑纹,很容易被食虫鸟类发现。那么,这会不会对它们自身不利呢?再仔细观察一下,就会发现它们的体表长着毒毛。如果这些幼虫被鸟类吞食,这些毒毛就会刺伤鸟的口腔黏膜,吃过这种苦头的鸟再见到这些幼虫就不敢吃它了。像蛾类幼虫这样,某些有恶臭或毒刺的动物所具有的鲜艳色彩和斑纹,叫做警戒色。黄蜂腹部黑黄相间的条纹,有些毒蛇体表的斑纹,等等,都是警戒色。警戒色的特点是色彩鲜艳,容易识别,能够对敌害起到预先示警的作用,因而有利于动物的自我保护。
(3)拟态
竹节虫的形态与树枝特别相似,几乎能以假乱真,因而很难被敌害发现。像这样,某些生物的外表形状或色泽斑纹,与其他生物或非生物非常相似的状态,叫做拟态。在丰富多彩的生物界,拟态的例子是很多的。例如,尺蠖的形状像树枝,枯叶蝶停息时的模样像枯叶(翅的背面比腹面颜色鲜艳,在停息的时候两翅合拢,现出枯叶的模样)。有的螳螂成虫的翅展开时像鲜艳的花朵,若虫的足像美丽的花瓣,可以诱使采食花粉的昆虫飞近,从而将这些昆虫捕食。蜂兰的唇形花瓣常常与雌黄蜂的外表相近,可以吸引雄黄蜂前来“交尾”。雄黄蜂从一朵蜂兰花飞向另一朵蜂兰花,就会帮助蜂兰花传粉。
保护色、警戒色和拟态等,都是生物在进化过程中,通过长期的自然选择而逐渐形成的适应性特征。
3.生物只有适应不断变化的环境才能生存和繁衍。
●备课资料
1.生物进化的基础:遗传与变异。
4.通过模拟保护色的探究活动,试着分析生物进化的原因。
答案:遗传和变异是生物进化的基础,在外界环境改变的情况下,只有适应才能生存和繁衍。
●板书设计
第三节 生物进化的原因
3.在进行模拟保护色的探究活动中,“你”扮演的角色是( )
A.猎物 B.捕食者 C.幸存者
答案:B
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com