4.设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)(3e1+2e2)= .
3.已知|a|2=1,|b|2=2,(a-b)⊥a,则a与b的夹角为 ( )
A.60° B.90° C.45° D.30°
2.已知等边△ABC的边长为1,且=a,=b,=c,则a·b+b·c+c·a等于 ( )
A.- B. C.0 D.
1.△ABC中,=a,=b,且a·b>0,则△ABC为 ( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形
5.已知|a|=3,|b|=4,(a+b)·(a+3b)=33,则a与b的夹角为 ( )
A.30° B.60° C.120° D.150°
[典型例题讲练]
例1、 已知:|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.
变式:设e1,e2是两个单位向量,它们的夹角为60°,则(2e1-e2)(3e1+2e2)= .
例2已知a、b都是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b的夹角.
变式: 已知|a|=2,|b|=5,a·b=-3,求|a+b|,|a-b|.
[课堂小结]
掌握平面向量数量积运算规律,能利用数量积的5个重要性质及数量积运算规律解决有关问题,掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
[课堂检测]
4.设a,b,c为任意非0向量,且相互不共线,则真命题为 ( )
(1)(a·b)·c-(c·a)·b=0 (2)|a|-|b|<|a-b|
(3)(b·c)·a-(c·a)·b不与c垂直 (4)(3a+2b)(3a-2b)=9|a|2-4|b|2
A.(2)(4) B.(2)(3) C.(1)(2) D.(3)(4)
3.已知|a|=2,|b|=3,a与b的夹角为90°,则a·b=_________
2. 已知△ABC中,a=5,b=8,C=60°,则·=__________
1. 判断正误,并简要说明理由.
①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,c都有(a·b)c=a(b·c);⑧a与b是两个单位向量,则a2=b2.⑨a·b>0,则它们的夹角为锐角。
4.两向量垂直的坐标表示:设a=(x1,y1),b=(x2,y2),则a⊥b___________.
[基本训练]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com