g(x)∈M,∴存在区间[a,b][1,+∞],满足g(a)=a,g(b)=b.
即方程g(x)=x在[1,+∞]内有两个不等实根.
[法一]:方程+t=x在[1,+∞]内有两个不等实根,等价于方程x-1=(x-t)2在[2t,+∞]内有两个不等实根.
即方程x2-(4t+4)x+4t2+4=0在[2t,+∞]内有两个不等实根.
22. (本小题满分12分)已知集合M是同时满足下列两个性质的函数f(x)的全体:①f(x)在其定义域上是单调增函数或单调减函数;②在f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域是[a,b].(1)判断函数y=-x3是否属于集合M?并说明理由.若是,请找出区间[a,b].(2)若函数y=+t∈M,求实数t的取值范围.
解:(1)y=-x3的定义域是R,
y'=-3x2≤0,∴y=-x3在R上是单调减函数.
则y=-x3在[a,b]上的值域是[-b3,-a3].
由 解得:或 (舍去)或 (舍去)
∴函数y=-x3属于集合M,且这个区间是[-,]??????????? 6分
(2)设g(x)=+t,则易知g(x)是定义域[1,+∞]上的增函数.
∴。?????????????????????????? 12分
故
∴,即递增,
则
记
⑵
同理,???????????????????????? 4分
解:⑴由已知得,∴
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com