2. 若函数 是定义在R上的偶函数,在 上是减函数,且 ,则使得的取值范围是 ( )
A. B. C. D.(-2,2)
1.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离,x轴表示出发后的时间,则适合题意的图形是( )
[例1]判断函数的单调性.
错解:是减函数
错因:概念不清,导致判断错误.这是一个复合函数,而复合函数的单调性(或单调区间),仍是从基础函数的单调性(或单调区间)分析,但需注意内函数与外函数的单调性的变化.当然这个函数可化为,从而可判断出其单调性.
正解: 令,则该函数在R上是减函数,又在R上是减函数,
∴ 是增函数
[例2]判断函数的奇偶性.
错解:∵=
∴
∴是偶函数
错因:对函数奇偶性定义实质理解不全面.对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.
正解:有意义时必须满足
即函数的定义域是{|},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数
[例3] 判断的奇偶性.
错解:∵
∴且
所以该函数既不是奇函数也不是偶函数
错因:对数运算公式不熟悉,或者说奇偶性的判别方法不灵活.定义中f(-x)=-f(x)
f(-x)=f(x),也可改为研究f(-x)+f(x) =0 ,f(-x)-f(x)=0是否成立.
正解:方法一:∵
===-
∴是奇函数
方法二:∵
=
∴是奇函数
[例4]函数y=的单调增区间是_________.
错解:因为函数的对称轴是,图像是抛物线,开口向下,由图可知在上是增函数,所以y=的增区间是
错因:在求单调性的过程中注意到了复合函数的单调性研究方法,但没有考虑到函数的单调性只能在函数的定义域内来讨论,从而忽视了函数的定义域,导致了解题的错误.
正解:y=的定义域是,又在区间上增函数,在区间是减函数,所以y=的增区间是
[例5] 已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,求x的取值范围.
错解:∵f(x)是奇函数,∴f(x-3)<-f(x2-3)= f (3-x2),又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0
解得x>2或x<-3
又 f(x)是定义在(-3,3)上的函数,
所以2<x<3
错因:只考虑到奇函数与单调性,而没有正确理解函数的定义域.
正解:由,故0<x<,
又∵f(x)是奇函数,∴f(x-3)<-f(x2-3)=f(3-x2),又f(x)在(-3,3)上是减函数,
∴x-3>3-x2,即x2+x-6>0,解得x>2或x<-3,综上得2<x<,即A={x|2<x<},
[例6] 作出下列函数的图像(1)y=|x-2|(x+1);(2).
分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.在变换函数解析式中运用了转化变换和分类讨论的思想.
解:(1)当x≥2时,即x-2≥0时,
当x<2时,即x-2<0时,
所以
这是分段函数,每段函数图像可根据二次函数图像作出(见图)
(2)当x≥1时,lgx≥0,y=10lgx=x;
当0<x<1时,lgx<0,
所以
这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图)
点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x,y的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像.
[例7]若f(x)= 在区间(-2,+)上是增函数,求a的取值范围
解:设
由f(x)=在区间(-2,+)上是增函数得
∴a>
点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉.
[例8] 已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明:
(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减
解:证明:(1)由f(x)+f(y)=f(),令x=y=0,得f(0)=0,令y=-x,得f(x)+f(-x)=f()=f(0)=0.∴f(x)=-f(-x).∴f(x)为奇函数.
(2)先证f(x)在(0,1)上单调递减.
令0<x1<x2<1,则f(x2)-f(x1)=f(x2)+f(-x1)=f()
∵0<x1<x2<1,∴x2-x1>0,1-x1x2>0,∴>0,
又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0
∴x2-x1<1-x2x1,
∴0<<1,由题意知f()<0,?
即f(x2)<f(x1).
∴f(x)在(0,1)上为减函数,又f(x)为奇函数且f(0)=0.
∴f(x)在(-1,1)上为减函数.
点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高. 如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f(0)的值进而取x=-y是解题关键;对于(2),判定的范围是解题的焦点.
3. 用列表描点法总能作出函数的图像,但是不了解函数本身的特点,就无法了解函数图像的特点,如二次函数图像是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图像的特征描绘出来的.
2.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图像关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图像的特殊的对称性的反映.
这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.
1. 对函数单调性的理解, 函数的单调性一般在函数的定义域内的某个子区间上来讨论,函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.
3.函数的图像:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到平面内的一个点(x0,f(x0)),当自变量取遍函数定义域内的每一个值时,就得到一系列这样的点,所有这些点的集合(点集)组成的图形就是函数y=f(x)的图像.
2.函数的奇偶性:
(1)奇函数:一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数.
(2)一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x) =f(x),那么函数f(x)就叫做偶函数.
(3)如果函数f(x)是奇函数或偶函数,那么就说f(x)具有奇偶性.
1.函数的单调性:
(1)增函数:一般地,设函数的定义域为I,如果定义域I内某个区间上任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.
(2)减函数:一般地,设函数的定义域为I,如果定义域I内某个区间上任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
(3)单调性(单调区间)如y=f(x)在某个区间上是增函数或减函数,那么就说函数f(x)在这区间上具有单调性,这一区间叫做函数y=f(x)的单调区间.
8.已知函数是函数(R)的反函数,函数的图像与函数的图像关于直线y=x-1成轴对称图形,记=+.
(1)求函数F(x)的解析式及定义域;
(2)试问在函数F(x)的图像上是否存在两个不同的点A、B,使直线AB恰好与y轴垂直?若存在,求出A、B两点的坐标;若不存在,说明理由.
§2. 函数的性质
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com