5.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、
4.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质.
3.掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题.
2.熟悉三角变换常用的方法--化弦法,降幂法,角的变换法等.并能应用这些方法进行三角函数式的求值、化简、证明.
1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等.
角的概念的推广,弧度制; 任意角的三角函数,单位圆中的三角函数线,同角三角函数的基本关系式:sina+cosa=1, sin a/cos a=tan a, tan a cot a=1,正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切;正弦函数、余弦函数的图象和性质,周期函数,函数y=Asin(ωx+ψ)的图象,正切函数的图象和性质,已知三角函数值求角;正弦定理,余弦定理,斜三角形解法举例。 二、考试要求 1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。 2 掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义,掌握同解三角函数的基本关系式,掌握正弦、余弦的诱导公式,理解周期函数与最小正周期的意义。 3.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式。 4.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明。 5.了解正弦函数、余弦函数、正切函数的图象和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+ψ)的简图,理解A、ω、ψ的物理意义。 6.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x表示。 7.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题。
8.人们工作、学习和劳动都需要能量,食物在人体内经消化过程转化为葡萄糖,葡萄糖在体内又转化为CO2和 H2O,同时产生能量 E=2.80 ×106 J·mol-1.一个质量为60kg的短跑运动员起跑时以1/6s的时间冲出1m远,他在这一瞬间内消耗体内储存的葡萄糖质量是多少?
7.物体以5m/s的初速度沿光滑斜槽向上做直线运动,经4 s滑回原处时速度大小仍为 5 m/s,则物体的速度变化为_____,加速度为_____.(规定初速度方向为正方向).
6.在离地面高h处让一球自由下落,与地面碰撞后反弹的速度是碰前3/5,碰撞时间为Δt,则球下落过程中的平均速度大小为_____,与地面碰撞过程中的平均加速度大小为_______。(不计空气阻力).
5.一辆汽车在一直线上运动,第1s内通过5m,第2s内通过 10 m,第 3 s内通过20 m,4 s内通过5 m,则最初两秒的平均速度是 m/s,最后两秒的平均速度是__m/s,全部时间的平均速度是______m/s.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com