1.已知集合,,则M∩N =
21. (本大题满分14分)
已知数列{an}的前n项和Sn是二项式展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设,,求的值.
20. (本大题满分13分)
己知a≠0,函数,二次函数.
(1)若a < 0,求函数的单调区间;
(2)当函数存在最大值且与的图象只有一个公共点时,记的最大值为,求函数的解析式;
(3)若函数与在区间(a-2,a)内均为增函数,求实数a的取值范围.
19. (本大题满分12分)
已知点A(-1,0)、B(1,0)和动点M满足:,且,动点M的轨迹为曲线C,过点B的直线交C于P、Q两点.
(1)求曲线C的方程;
(2)求△APQ面积的最大值.
18.
(本大题满分12分)
在如图所示的四面体ABCD中,AB、BC、CD两两互相垂直,且BC = CD
= 1.
(1)求证:平面ACD⊥平面ABC;
(2)求二面角C-AB-D的大小;
(3)若直线BD与平面ACD所成的角为30°,求线段AB的长度.
17.
(本大题满分12分)
已知A、B、C的坐标分别为A(3,0)、B(0,3)、C(),.
(1)若,求角的值;
(2)若,求的值.
16. (本大题满分12分)
某校高三文科分为四个班,高三数学调研测试后,随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130 (包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1)各班被抽取的学生人数各为多少人?
(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.
15. 已知是以2为周期的偶函数,当x∈[0,1]时,,那么在区间[-1,3]内,关于x的方程 (k∈R,k≠1)有4个根,则k的取值范围为 .
14.
假设甲、乙、丙三镇两两之间的距离皆为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com