3、从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为.
2、在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是.
1、据人口普查统计,育龄妇女生男生女是近似等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率约是( C )
A. B. C. D.
1、进一步掌握古典概型的计算公式;
4、有甲,乙,丙三位同学分别写了一张新年贺卡然后放在一起,现在三人均从中抽取一张.
(1)求这三位同学恰好都抽到别人的贺卡的概率.
(2)求这三位同学恰好都抽到自己写的贺卡的概率.
解:(1)其中恰好都抽到别人的贺卡有②③①,③①②两种情况,
故其概率为.
(2)恰好都抽到自己的贺卡的概率是.
3. 判断下列命题正确与否.
(1)掷两枚硬币,可能出现“两个正面”,“两个反面”,“一正一反”3种结果;
(2)某袋中装有大小均匀的三个红球,两个黑球,一个白球,那么每种颜色的球被摸到的可能性相同;
(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;
(4)分别从3名男同学,4名女同学中各选一名作代表,那么每个同学当选的可能性相同.
解:四个命题均不正确.(1)应为4种结果,还有一种是”一反一正”;(2)摸到红球的概率为,摸到黑球的概率为,摸到白球的概率为;(3)取到小于0的数字的概率为,取到不小于0的数字的概率为;(4)男同学当选的概率为,女同学当选的概率为.
2、盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( C )
A. B. C. D.
1、在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( B )
A. B.
C. D.以上都不对
4、古典概型的概率:
如果一次试验的等可能事件有个,那么,每个等可能基本事件发生的概率都是;如果某个事件包含了其中个等可能基本事件,那么事件发生的概率为.
[精典范例]
例1 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,
(1)共有多少个基本事件?
(2)摸出的两个都是白球的概率是多少?
[分析]可用枚举法找出所有的等可能基本事件.
[解](1)分别记白球为号,黑球号,从中摸出只球,有如下基本事件(摸到1,2号球用表示):
因此,共有10个基本事件.
(2)上述10个基本事件法上的可能性是相同的,且只有3个基本事件是摸到两个白球(记为事件),即,故
∴共有10个基本事件,摸到两个白球的概率为;
例2 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为,决定矮的基因记为,则杂交所得第一子代的一对基因为,若第二子代的基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因则其就是高茎,只有两个基因全是时,才显现矮茎).
分析:由于第二子代的基因的遗传是等可能的,可以将各种可能的遗传情形都枚举出来.
[解]与的搭配方式共有4中:,其中只有第四种表现为矮茎,故第二子代为高茎的概率为
答:第二子代为高茎的概率为.
思考:第三代高茎的概率呢?
例3 一次抛掷两枚均匀硬币.
(1)写出所有的等可能基本事件;
(2)求出现两个正面的概率;
[解](1)所有的等可能基本事件为:甲正乙正,甲正乙反,甲反乙正,甲反乙反共四个.
(2)由于这里四个基本事件是等可能发生的,故属古典概型..
例4 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率.
[分析]掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型.
[解]这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)
所以基本事件数n=6,
事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),
其包含的基本事件数m=3,
所以,P(A)====0.5.
[小结]利用古典概型的计算公式时应注意两点:
(1)所有的基本事件必须是互斥的;
(2)m为事件A所包含的基本事件数,求m值时,要做到不重不漏.
例5 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.
[解]每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品,用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)],事件A由4个基本事件组成,因而,P(A)==.
追踪训练
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com