例4: 利用指数的运算法则,解下列方程:
(1)43x+2=256×81-x
(2)2x+2-6×2x-1-8=0
解:(1)因为43x+2=256×81-x
所以26x+4=28×23-3x
所以6x+4=11-3x
所以x=
(2)因为2x+2-6×2x-1-8=0
所以4×2x-3×2x-8=0
所以2x=8
所以x=3
分析:利用分数指数幂的性质将方程两边转化为同底的指数幂.
[解](1)原方程可化为:,
,,∴
原方程的解为.
(2)原方程可化为:,
∴,,
原方程的解为.
点评:将指数方程转化为一元一次或一元二次方程是解题的关键.
思维点拔:
(1)根式与分数指数幂运算要灵活地互化;(2)一般地在化简过程中,先将根式化为分数指数幂,然后利用同底运算性质进行运算.
追踪训练二
1.化简:
解:
.
3.若,则
.
学生质疑 |
|
教师释疑 |
|
2.在①;②;③;④()各式中,有意义的是( )
①② ①③ ①②③④ ①③④
例4:解下列方程(1);
(2)
分析:对原方程因式分解。
[解](1)原方程可化为,
∴,
原方程的根为。
(2)原方程可化为,
∵,∴,
,,
原方程的根为。
点评:通过因式分解把原方程转化为二项方程,再利用根式意义求解。
思维点拔:
(1)求根式的值时要注意使根式有意义的被开方数的取值范围;(2)求形如的根式的值时要分清的奇偶性.
追踪训练二
1.成立的条件是( )
5、若f:y=3x+1是从集合A={1,2,3,k}到集合B={4,7,a4,a2+3a}的一个映射,该映射满足B中任何一个元素均有原象,求自然数a、k及集合A、B.
答案:a=2, k=5, A={1,2,3,5} B={4,7,10,16}
[师生互动]
学生质疑 |
|
教师释疑 |
|
4、已知映射f: A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中元素都是A中的元素在映射f下的象,且对任意a∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是( )
A.4 B.5 C.6 D.7
答案:A
3、已知映射f: A→B,下面命题:
(1)A中的每一个元素在B中有且仅有一个象;
(2)A中不同的元素在B中的象必不相同;
(3)B中的元素在A中都有原象
(4)B中的元素在A中可以有两个以上的原象也可以没有原象。
假命题的个数是( )
A.1 B.2 C.3 D.4
答案:B
2、设f:A→B是集合A到B的映射,下列命题中是真命题的是( )
A.A中不同元素必有不同的象
B.B中每一个元素在A中必有原象
C.A中每一个元素在B中必有象
D.B中每一个元素在A中的原象唯一
答案:C
例3、给出下列四个对应的关系
①A=N*,B=Z,f:x→y=2x-3;
②A={1,2,3,4,5,6},B={y|y∈N*,y≤5},f:x→y=|x-1|;
③A={x|x≥2},B={y|y=x2-4x+3},f:x→y=x-3;
④A=N,B={y∈N*|y=2x-1,x∈N*},f:x→y=2x-1。
上述四个对应中是函数的有( )
A.① B.①③ C.②③ D.③④
思维分析:判断两个集合之间的对应是否构成函数,首先应判断能否构成映射,且构成映射的两个集合之间对应必须是非空数集之间的对应。
[解]:
①中,对x∈A,在f作用下,在B中都有唯一的象,因此能构成映射.由于A、B均为非空数集,因而能构成函数;②中,当x=1时,y=0B,即集合A中的元素1在集合B中无象,因而不能构成映射,从而也不能构成函数;④中,当x=0时,y=-1B,即0在B中无象,因而不能构成映射,也就不能构成函数;③中的两个对应符合映射的定义,且两个集合均为非空数集,因而能构成函数。
答案:B
[选修延伸]
求映射的个数问题
例4、已知A={a,b,c},B={-1,0,1},映射f:A→B满足f(a)+f(b)=f(c),求映射f: A→B的个数。
思维分析:可让A中元素在f下对应B中的一个、两个或三个元素,并且满足f(a)+f(b)=f(c),需分类讨论。
[解]:(1)当A中三个元素都是对应0时,则f(a)+f(b)=0+0=0=f(c)有1个映射。
(2)当A中三个元素对应B中两个时,满足f(a)+f(b)=f(c)的映射有4个,分别为1+0=0,0+1=0,(-1)+0=-1,0+(-1)=-1.
(3)当A中的三个元素对应B中的三个元素时,有两个映射,分别为(-1)+1=0,1+(-1)=0.
因此满足题设条件的映射有7个。
追踪训练
1、下列对应是A到B上的映射的是( )
A.A=N*,B=N*,f:x→|x-3|
B.A=N*,B={-1,1, -2},f:x→(-1)x
C.A=Z,B=Q,f:x→
D.A=N*,B=R,f:x→x的平方根
答案:B
例2、已知集合A=R,B={(x,y)|x,y∈R},f:A→B是从A到B的映射,f:x→(x+1,x2+1),求A中的元素在B中的象和B中元素(,)在A中的原象。
思维分析:将x=代入对应关系,可求出其在B中对应元素,(,)在A中对应的元素可通过列方程组解出。
[解]:
将x=代入对应关系,可求出其在B中的对应元素(+1,3). 可通过列方程组也可求出(,)在A中对应的元素为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com