3.空间两直线的位置关系(3种关系):
2.平面的基本性质(3个公理与3个推论) :
.
1.空间几何体(柱锥台球,三视图) 的概念:
2. 会证线线、线面、面面的平行与垂直的问题,会求简单的线线、线面、面面间的角与距离以及简单几何体的面积与体积的问题.
[课堂互动]
自学评价
知识网络
学习要求
1.温故本章内容,使知识系统化,条理化.分清重点,明确难点,再现注意点,达到巩固与知新的效果。
3.多面体至少有几个面?这个多面体是怎样的几何体。
答:4个面,四面体.
2.右图中的几何体是不是棱台?为什么?
答:不是,因为四条侧棱延长不交于一点.
1. 如图,四棱柱的六个面都是平行四边形。这个四棱柱可以由哪个平面图形按怎样的方向平移得到?
答由四边形ABCD沿AA1方向平移得到.
5.多面体的分类:
⑴棱柱的分类
⑵棱锥的分类
⑶棱台的分类
[精典范例]
例1:设有三个命题:
甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;
乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;
丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。
以上各命题中,真命题的个数是 (A)
A.0 B. 1 C. 2 D. 3
例2:画一个四棱柱和一个三棱台。
[解]四棱柱的作法:
⑴画上四棱柱的底面----画一个四边形;
⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;
⑶画下底面------顺次连结这些线段的另一个端点
见书7页例1
⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.
见书7页例1
学生质疑 |
|
教师释疑 |
|
点评:(1)被遮挡的线要画成虚线(2)画台由锥截得
思维点拔:
解柱、锥、台概念性问题和画图需要:
(1).准确地理解柱、锥、台的定义
(2).灵活理解柱、锥、台的特点:
例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。反过来,若一个几何体,具有上面三条,能构成棱柱吗?或者说,上面三条能作为棱柱的定义吗?
答:不能.
点评:就棱柱来验证这三条性质,无一例外,能不能找到反例,是上面三条能作为棱柱的定义的关键。
追踪训练一
4.多面体的定义:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com