0  250583  250591  250597  250601  250607  250609  250613  250619  250621  250627  250633  250637  250639  250643  250649  250651  250657  250661  250663  250667  250669  250673  250675  250677  250678  250679  250681  250682  250683  250685  250687  250691  250693  250697  250699  250703  250709  250711  250717  250721  250723  250727  250733  250739  250741  250747  250751  250753  250759  250763  250769  250777  447090 

3.在等比数列{an}中,如果a6=6,a9=9,那么a3等于(   )

A.4      B.  C.  D.2

试题详情

2.如图,在边长为1的等边三角形ABC中,连结各边中点得△A1B1C1,再连结△A1B1C1各边中点得△A2B2C2……如此继续下去,试证明数列S△ABC

S△A1B1C1,S△A2B2C2,…是等比数列.

试题详情

1.三个数成等比数列,它们的积等于27,它们的平方和等于91,求这三个数.

试题详情

3.对于klmn∈N*,若,则_________________

[选修延伸]

[例1](1)在等比数列{an}中,是否有a2nan-1 an+1(n≥2)?

(2)如果数列{an}中,对于任意的正整数n(n≥2),都有a2nan-1 an+1,那么,{an}一定是等比数列吗?

[解]

[例2]如图,一个边长为1的正三角形,将每边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)……试求第n个图形的边长和周长.

[解]

追踪训练一

试题详情

2.等比数列的递增和递减性. 

在等比数列{an}中

(1)若a1>0,q>1或a1<0,0<q<1则数列递

(2)若a1>0,0<q<1,或a1<0,q>1 ,则数列递

(3)若q=1,则数列为_____________

(4)若q<0,则数列为____________.

试题详情

1.如果an≠0,且an+12=anan+2对任意的n∈N*都成立,则数列{an}___________.

试题详情

2. 掌握等比数列的通项公式,并能运用公式解决一些简单的实际问题.

[自学评价]

试题详情

1.进一步体会等比数列是用来刻画一类离散现象的重要数学模型,理解等比数列的概念,

试题详情

1.(2009南宁)南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价(元)与铺设面积的函数关系如图12所示;乙工程队铺设广场砖的造价(元)与铺设面积满足函数关系式:

(1)根据图12写出甲工程队铺设广场砖的造价(元)与铺设面积的函数关系式;

(2)如果狮山公园铺设广场砖的面积为,那么公园应选择哪个工程队施工更合算?

解:(1)当时,设,把代入上式得:

·················································································································· 2分

时,设,把代入上式得:

··································································································· 3分

解得:·········································································································· 4分

···················································································· 5分

(2)当时,················································· 6分

·············································································· 7分

时,即:

得:··················································································································· 8分

时,即:

得:············································································································· 9分

时,即

答:当时,选择甲工程队更合算,当时,选择乙工程队更合算,当时,选择两个工程队的花费一样.···························································································································· 10分

2(09钦州)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:),解答下列问题:

(1)写出用含xy的代数式表示的地面总面积;

(2)已知客厅面积比卫生间面积多212,且地面总面积是卫生间面积的15倍,铺12地砖的平均费用为80元,求铺地砖的总费用为多少元?

解:(1)地面总面积为:(6x+2y+18)2;···························································· 4分

(2)由题意,得······················································· 6分

解之,得····················································································· 8分

∴地面总面积为:6x+2y+18=6×4+2×+18=45(2).·············· 9分

∵铺12地砖的平均费用为80元,

∴铺地砖的总费用为:45×80=3600(元).·········································· 10分

3(09湖南)为迎接“建国60周年”国庆,我市准备用灯饰美化红旗路,需采用A、B两种不同类型的灯笼200个,且B灯笼的个数是A灯笼的

(1)求A、B两种灯笼各需多少个?

(2)已知A、B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用?

(1)设需种灯笼个,种灯笼个,根据题意得:

··············································································································· 4分

解得·············································································································· 6分

(2)120×40+80×60=9600(元).············································································· 8分

4(09定西)图(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm,求室内露出的墙的厚度a的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm,)

 

解从图中可以看出,在室内厚为acm的墙面、宽

为4cm的门框及开成120°的门之间构成了一

个直角三角形,且其中有一个角为60°.·········· 3分

从而  a=4×tan60° ·············································· 6分

=4×≈6.9(cm).·································· 8分

即室内露出的墙的厚度约为6.9cm.

5(09河池)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.

(1)试销时该品种苹果的进货价是每千克多少元?

(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?

解:(1)设试销时这种苹果的进货价是每千克元,依题意,得······························· (1分)

··············································································· (5分)

解之,得  5···················································································· (6分)

经检验,5是原方程的解.······························································· (7分)

(2)试销时进苹果的数量为: (千克)

第二次进苹果的数量为:2×10002000(千克)········································· (8分)

盈利为:  2600×7+400×7×0.7-5000-110004160(元) ······················ (9分)

答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.

·············································· (10分)

6(09南宁)如图,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.

(1)用含的式子表示横向甬道的面积;

(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;

(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?

.解:(1)横向甬道的面积为:··········································· 2分

(2)依题意:·············································· 4分

整理得:

(不符合题意,舍去)······································································· 6分

甬道的宽为5米.

(3)设建设花坛的总费用为万元.

············································ 7分

时,的值最小.··························································· 8分

因为根据设计的要求,甬道的宽不能超过6米,

米时,总费用最少.······················································································ 9分

最少费用为:万元·················································· 10分

7(09本溪)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.

(1)求购买每个笔记本和钢笔分别为多少元?

(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买支钢笔需要花元,请你求出的函数关系式;

(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

解(1)解:设每个笔记本元,每支钢笔元.·························································· 1分

············································································································· 2分

解得

答:每个笔记本14元,每支钢笔15元.······································································· 5分

······························································· 6分
······························································· 7分
 
(2)

(3)当时,

时,

时,.···················································································· 8分

综上,当买超过10件但少于15件商品时,买笔记本省钱;

当买15件奖品时,买笔记本和钢笔一样;

当买奖品超过15件时,买钢笔省钱.·········································································· 10分

8(09泉州)如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米.

(1)请求出底边BC的长(用含x的代数式表示);

(2)若∠BAD=60°, 该花圃的面积为S米2.

①求S与x之间的函数关系式(要指出自变量x的取值范围),并求当S=时x的值;

②如果墙长为24米,试问S有最大值还是最小值?这个值是多少?

解:(1)∵AB=CD=x米,∴BC=40-AB-CD=(40-2x)

……………………………………………………(3分)

(2)①如图,过点B、C分别作BE⊥AD于E,CF⊥AD于F,在Rt△ABE中,AB=x,∠BAE=60°

∴AE=x,BE=x.同理DF=x,CF=x

又EF=BC=40-2x

∴AD=AE+EF+DF=x+40-2x+x=40-x……………………………(4分)

∴S= (40-2x+40-x)·x=x(80-3x)

= (0<x<20)…………………………………(6分)

当S=时,=

解得:x1=6,x2=(舍去).∴x=6………………………………(8分)

②由题意,得40-x≤24,解得x≥16,

结合①得16≤x<20………………………………………………………………(9分)

由①,S==

∵a=<0

∴函数图象为开口向下的抛物线的一段(附函数图象草图如左).

其对称轴为x=,∵16>,由左图可知,

当16≤x<20时,S随x的增大而减小……………………………(11分)

∴当x=16时,S取得最大值,………………………………………(12分)

此时S最大值=.…………………(13分)

9(09衢州)水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:

 
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第8天
售价x(元/千克)
400
 
250
240
200
150
125
120
销售量y(千克)
30
40
48
 
60
80
96
100

观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.

(1) 写出这个反比例函数的解析式,并补全表格;

(2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?

解:(1) 函数解析式为.                                    ……2分

填表如下:

 
第1天
第2天
第3天
第4天
第5天
第6天
第7天
第8天
售价x(元/千克)
400
300
250
240
200
150
125
120
销售量y(千克)
30
40
48
50
60
80
96
100

……2分

(2) 2 104-(30+40+48+50+60+80+96+100)=1 600,

即8天试销后,余下的海产品还有1 600千克.                  ……1分

x=150时,=80.                                 ……2分

1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.       ……1分

10(09衢州)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.

(1) 在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?

(2) 在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?

(3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?

解:(1) 18日新增甲型H1N1流感病例最多,增加了75人;             ……4分

(2) 平均每天新增加人,                          ……2分

继续按这个平均数增加,到5月26日可达52.6×5+267=530人;        ……2分

(3) 设每天传染中平均一个人传染了x个人,则

解得(x = -4舍去).                                     ……2分

再经过5天的传染后,这个地区患甲型H1N1流感的人数为

(1+2)7=2 187(或1+2+6+18+54+162+486+1 458=2 187),

即一共将会有2 187人患甲型H1N1流感.                        ……2分

试题详情


同步练习册答案