3、等差,且则在中,最大的负数为( )
A、 B、 C、 D、
2、等比数列中,,则 。
1、首项为81,公差为-7的等差数列中,取得最小值时的值为 。
8.已知向量,,.
(Ⅰ)求的值;
(Ⅱ)若,,且,求的值.
解(Ⅰ),
.
, ,
即 . .
(Ⅱ)
,
,
.
7.已知a=(cosα,sinα),b=(cosβ,sinβ),a与b之间有关系|ka+b|=|a-kb|,其中k>0,
(1)用k表示a·b;
(2)求a·b的最小值,并求此时a·b的夹角的大小。
解 (1)要求用k表示a·b,而已知|ka+b|=|a-kb|,故采用两边平方,得
|ka+b|2=(|a-kb|)2
k2a2+b2+2ka·b=3(a2+k2b2-2ka·b)
∴8k·a·b=(3-k2)a2+(3k2-1)b2
a·b =
∵a=(cosα,sinα),b=(cosβ,sinβ),
∴a2=1, b2=1,
∴a·b ==
(2)∵k2+1≥2k,即≥=
∴a·b的最小值为,
又∵a·b =| a|·|b |·cos,|a|=|b|=1
∴=1×1×cos。
∴=60°,此时a与b的夹角为60°。
错误原因:向量运算不够熟练。实际上与代数运算相同,有时可以在含有向量的式子左右两边平方,且有|a+b|2=|(a+b)2|=a2+b2+2a·b或|a|2+|b|2+2a·b。
6.已知向量(m为常数),且,不共线,若向量,的夹角落< , >为锐角,求实数x的取值范围.
解:要满足<>为锐角
只须>0且()
=
=
=
即 x (mx-1) >0
1°当 m > 0时
x<0 或
2°m<0时
x ( -mx+1) <0
3°m=0时 只要x<0
综上所述:x > 0时,
x = 0时,
x < 0时,
5.已知ÐA、ÐB、ÐC为DABC的内角,且f(A、B)=sin22A+cos22B-sin2A-cos2B+2
(1)当f(A、B)取最小值时,求ÐC
(2)当A+B=时,将函数f(A、B)按向量平移后得到函数f(A)=2cos2A求
解:(1) f(A、B)=(sin22A-sin2A+)+(cos22B-cos2B+)+1
=(sin2A-)2+(sin2B-)2+1
当sin2A=,sin2B=时取得最小值,
∴A=30°或60°,2B=60°或120° C=180°-B-A=120°或90°
(2) f(A、B)=sin22A+cos22()-
=
=
=
4.已知函数f(x)=m|x-1|(mÎR且m¹0)设向量),,,,当qÎ(0,)时,比较f()与f()的大小。
解:=2+cos2q,=2sin2q+1=2-cos2q
f()=m|1+cos2q|=2mcos2q
f()=m|1-cos2q|=2msin2q
于是有f()-f()=2m(cos2q-sin2q)=2mcos2q
∵qÎ(0,) ∴2qÎ(0, ) ∴cos2q>0
∴当m>0时,2mcos2q>0,即f()>f()
当m<0时,2mcos2q<0,即f()<f()
3.已知向量m=(1,1),向量与向量夹角为,且·=-1,
(1)求向量;
(2)若向量与向量=(1,0)的夹角为,向量=(cosA,2cos2),其中A、C为DABC的内角,且A、B、C依次成等差数列,试求|+|的取值范围。
解:(1)设=(x,y)
则由<,>=得:cos<,>== ①
由·=-1得x+y=-1 ②
联立①②两式得或
∴=(0,-1)或(-1,0)
(2) ∵<,>=
得·=0
若=(1,0)则·=-1¹0
故¹(-1,0) ∴=(0,-1)
∵2B=A+C,A+B+C=p
ÞB= ∴C=
+=(cosA,2cos2)
=(cosA,cosC)
∴|+|===
=
=
=
=
∵0<A<
∴0<2A<
∴-1<cos(2A+)<
∴|+|Î()
2.在中,已知,且的一个内角为直角,求实数的值.
错误分析:是自以为是,凭直觉认为某个角度是直角,而忽视对诸情况的讨论.
答案: (1)若即
故,从而解得;
(2)若即,也就是,而故,解得;
(3)若即,也就是而,故,解得
综合上面讨论可知,或或
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com