0  252011  252019  252025  252029  252035  252037  252041  252047  252049  252055  252061  252065  252067  252071  252077  252079  252085  252089  252091  252095  252097  252101  252103  252105  252106  252107  252109  252110  252111  252113  252115  252119  252121  252125  252127  252131  252137  252139  252145  252149  252151  252155  252161  252167  252169  252175  252179  252181  252187  252191  252197  252205  447090 

(二)两个平面垂直的性质

师:今天我们接着研究两个平面垂直的性质.

两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.

已知:平面α⊥β,α∩β=CD,AB α且AB⊥CD于B.

求证:AB⊥β.

证明:在平面β内引直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角.

∵α⊥β,∴AB⊥BE.

又∵AB⊥CD,∴AB⊥β.

师:从性质定理可以得出,把面面垂直的问题转化为线面垂直的问题.

例1  如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.

已知:α⊥β,P∈α,P∈a,a⊥β.

求证:a α.

师提示:要证明a α,一般用反证法,即否定结论→推出矛盾→肯定结论.下面请同学们写出它的证明过程.

其中c为α与β的交线.

∵α⊥β,∴b⊥β.

又∵P∈α,P∈a,a⊥β,

这与“过一点P有且只有一条直线与已知平面垂直”矛盾.

∴a α.

师:现在我们来看课本P.44的证明,这种方法叫同一法.什么是同一法呢?(幻灯显示)

一个命题,如果它的题设和结论所指的事物都是唯一的,那么原命题和它的逆命题中,只要有一个成立,另一个就一定成立,这个道理叫做同一法则.在符合同一法则的前提下,代替证明原命题而证明它的逆命题成立的一种方法叫做同一法.

同一法的一般步骤是什么?(幻灯显示)

1.不从已知条件入手,而另作图形使它具有求证的结论中所提的特性;

2.证明所作的图形的特性,与已知条件符合;

3.因为已知条件和求证的结论所指的事物都是唯一的,从而推出所作的图形与已知条件要求的是一个东西,由此断定原命题成立.

证明(同一法):设α∩β=c,过点P在平面α内作直线b⊥c,根据上面的定理有b⊥β.

因为经过一点只能有一条直线与平面β垂直,所以直线a应与直线b重合.

即a α.

师:比较反证法与同一法,我们可以知道:凡可用同一法证明的命题也可用反证法来证;反证法可适用于各种命题,同一法只适用于符合同一法则的命题.

另外,例1的结论也可作为两个平面垂直的另一个性质,可直接应用.

下面请同学们一齐完成例2.

试题详情

本课题安排2课时.本节课为第二课时,主要讲解两个平面垂直的性质及异面直线上两点间的距离公式.

试题详情

3.教学疑点:

(1)弄清反证法与同一法的联系与区别.

(2)正确理解、应用异面直线上两点间的距离公式:EF=

试题详情

2.教学难点:异面直线上两点间距离公式的应用.

试题详情

1.教学重点:掌握两个平面垂直的性质;会运用异面直线上两点间的距离公式.

试题详情

(二)能力训练点

1.弄清反证法与同一法之间的关系,并会应用同一法证题,进一步培养学生的逻辑思维能力.

2.掌握两个平面垂直的性质定理,理解面面垂直问题可能化为线面垂直的问题.

3.异面直线上任意两点间的距离公式不仅可用于求其值,还可以证明两条异面直线的距离是异面直线上两点的距离中最小的.另外,还可解决分别在二面角的面内两点的距离问题.

试题详情

(一)知识教学点

1.两个平面垂直的性质定理.

2.异面直线上两点间的距离公式.

试题详情

22.   

(1)在处取得极值,求

(2)若在(),()(),求证:

(3)在(2)的条件下,,试比较,的大小关系。

试题详情

21. 等差数列中,

(1)求通项;

(2)若,试比较的大小关系。

试题详情


同步练习册答案