考纲点击:掌握函数的奇偶性的定义及图象特征,并能判断和证明函数的奇偶性,能利用函数的奇偶性解决问题.
热点提示:1.函数的奇偶性作为函数的一个重要性质,常与函数的单调性、周期性等知识交汇命题
2.每年的高考试题中,各种题型都可能出现,多以小题形式出现,属中低档题
本节复习重点:函数的奇偶性的定义及应用.
8.如图13,已知:C是以AB为直径的半圆上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连结AE并延长交BD于点F,直线CF交AB的延长线于点G.
(1)求证:点F是BD中点;
(2)求证:CG是的切线;
(3)若,求的半径.
7.如图12,是的内接三角形,,为中上一点,延长至点,使.
(1)求证:;
(2)若,求证:.
6.如图11,已知AC切于A,顺次交于两点,,,连结AD,AB.
(1)求证:;
(2)求线段DC的长.
5.如图10,D是边AB上一点,DE交AC于点E,,.求证:.
4.如图9,在Rt△ABC中,,,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且.求证:四边形ACEF是菱形.
3.如图8,菱形ABCD中,E、F分别为CB、CD延长线上的点,且.求证:.
1.下列命题中真命题的个数是( )
①两个相似多边形面积之比等于相似比的平方;
②两个相似三角形的对应高之比等于它们的相似比;
③在与中,,,那么;
④已知及位似中心,能够作一个且只能作一个三角形,使位似比为0.5.
(A)1个 (B)2个 (C)3个 (D)4个
2.已知如图7,在四边形ABCD中,对角线AC,BD交于点E,且AC平分∠DAB,AB=AE,AC=AD.下四个结论:①AC⊥BD;②CB=DE;③;④△ABE是等边三角形.请写出正确的结论序号____________(把你认为正确的结论序号填上,并证明其中一个).
21.解:(Ⅰ)在中,
由;
. …..3分
(Ⅱ)由(1)知.由此猜测 …..4分
下面用数学归纳法证明:
①当n=1时猜想显然成立;
②假设猜想成立,即,则有,
根据题意,得,解出 ,
于是 ,即当n=k+1时猜想也成立.
综合①②得对于所有都有 . …..8分
(Ⅲ)由(Ⅱ)知, . …..9分
假设存在非零常数p,q,使得数列成等差数列,设其公差为d,
令,则有,
从而,
化简得: …..11分
所以有,
. …..13分
故存在满足关系的非零常数p,q,使得数列成等差数列.…..14分
[链接高考]数列往往是难度较高的题,主要考查学生的探究能力,从近几年的高考来观察可发现数列对选拔性取着非常重要的作用.
20.解:(Ⅰ). …..1分
椭圆的焦点在y轴上,即F(0,1),F关于直线x-y=0对称的点为(1,0); …..2分
而抛物线的焦点坐标为即得p=2,所以所求抛物线的方程为. …..5分
(Ⅱ)证明:设M,的坐标分别为
由A、M、三点共线得: , …..7分
化简得,;
同理,由B、M、三点共线得:. …..9分
设(x,y)是直线上的任意一点,则; …..10分
把代入上式整理得:;
由M是任意的,则有 , …..13分
所以动直线恒过定点. …..14分
[链接高考]圆锥曲线和直线是解析几何的主线,考查学生的运算能力是解析几何的重要部分,特别是包含比较多字母的运算,同时也考查了“设而不求”的解题策略和数形结合的数学思想方法.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com