函数 叫做指数函数,其中x是自变量,函数的定义域是R。
注意:为什么要规定 a>0且a¹1:∵a<0时 ax 不一定有意义
a=0时,若x>0,ax=0;若x<0,则ax无意义
a=1时,y=1x=1(常量)没有研究必要。
为了避免上述各种情况,所以规定a>0且a¹1。
4.在长方体ABCD-A1B1C1D1中,∠BAB1=∠B1A1C1=30°.求:(1)AB与A1C1所成的角的度数;(2)A1A与CB1所成的角的度数;(3)AB1与A1C1所成的角的余弦.
例1 在长方体ABCD-A1B1C1D1中,AB=BC=3,AA1=4.求异面直线A1B和AD1所成的角的余弦.(如图1)
师:首先我们要以概念为指导作出这个角,A1B和AD1所成的角是哪一个角?
生:因为CD1∥A1B,所以∠AD1C即为A1B与AD1所成的角.
师:∠AD1C在△AD1C中,求出△AD1C的三边,然后再用余弦定理求出∠AD1C的余弦.
师:我们要再一次明确求异面直线所成的角的三个步骤:第一是以概念为指导作出所成的角;第二是找出这个角所在的三角形;第三是解这个三角形.现在我们再来看例2.
例2 在长方体ABCD-A1B1C1D1中,∠C1BC=45°,∠B1AB=60°.求AB1与BC1所成角的余弦.(如图2)
师:在这例中,我们除了首先要以概念为指导作出异面直线所成的角以外,还要注意把所给的特殊角的条件转化为长方体各棱之间的关系,以便于我们用余弦定理.
生:因为BC1∥AD1,所以AB1与BC1所成的角即为∠D1AB1.根
师:现在我们来看例3.
例3 已知正方体的棱长为a,M为AB的中点,N为B1B的中点.求A1M与C1N所成的角的余弦.(如图3)(1992年高考题)
师:我们要求A1M与C1N所成的角,关键还是以概念为指导作出这个角,当一次平移不行时,可用两次平移的方法.在直观图中,根据条件我们如何把A1M用两次平移的方法作出与C1N所成的角?
生:取A1B1的中点E,连BE,由平面几何可知BE∥A1M1,再取EB1的中点F,连FN由平面几何可知FN∥BE,所以NF∥A1M.所以∠C1NF即为A1M与C1N所成的角.
师:还可以用什么方法作出A1M与C1N所成的角?
生:当BE∥A1M后,可取C1C中点G,连BG,则BG∥C1N,
师:这两种解法都要用两次平移来作出异面直线所成的角,现在我们来看例4.
例4 在长方体ABCD-A1B1C1D1中,AA1=c,AB=a,AD=b,且a>b.求AC1与BD所成的角的余弦.(如图4)
师:根据异面直线所成的角的概念,再根据长方体的基本性质,如何作出AC1与BD所成的角。
生:连AC,设AC∩BD=0,则O为AC中点,取C1C的中点F,
定理,得
师:想一想第二个解法
生:取AC1中点O1,B1B中点G.在△C1O1G中,∠C1O1G即
一可知:
师:想一想第三个解法.当然还是根据异面直线所成的角概念首先作出这个角.有时可根据题目的要求在长方体外作平行直线.
生:延长CD到E,使ED=DC.则ABDE为平行四边形.AE∥BD,所以∠EAC1即为AC1与BD所成的角.(如图5)连EC1,在
由余弦定理,得
所以∠EAC1为钝角.
根据异面直线所成角的定义,AC1与BD所成的角的余弦为
师:根据这一道题的三种解法,我们可以看出,当用异面直线所成的角的概念,作出所成的角,这时所作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角.(异面直线所成的角的邻补角)
今天就讲这四个例题,这四个例题都是要用余弦定理来求异面直线所成的角.
作业
补充题
3.在棱长为a的正方体ABCD-A1B1C1D1中,O是正方形ABCD的中心,E,F分别是AB,BC中点.求:(1)异面直线A1D1和CD的距离;(2)异面直线C1O和EF的距离.
师:余弦定理有哪两种表述的形式?它们各有什么用途?
生:余弦定理有两种表述的形式,即:
a2=b2+c2-2bccos A
b2=c2+a2-2cacos B
c2=a2+b2-2abcos C
第一种形式是已知两边夹角用来求第三边,第二种形式是已知三边用来求角.
师:在立体几何中我们主要用余弦定理的第二种形式,即已知三角形的三边来求角.
在余弦定理的第二个形式中,我们知道b2+c2可以等于a2;也可以小于a2;也可以大于a2.那么,我们想当b2+c2=a2时,∠A等于多少度?为什么?
生:当b2+c2=a2时,由勾股定理的逆定理可知∠A=90°.
师:当b2+c2>a2时,∠A应该是什么样的角呢?
生:因为cosA>0,所以∠A应该是锐角.
师:当b2+c2<a2时,∠A应该是什么样的角呢?
生:因为这时cosA<0,所以∠A应该是钝角.
师:对,关于这个问题,我们只要求同学们有初步的理解即可.初步理解后应该记住、会用.现在明确提出当cosθ=0时,θ=90°,θ是直角;当cosθ>0时,0°<θ<90°,θ是锐角当cosθ<0时,90°<θ<180°,θ是钝角.下面请同学们回答下列问题:
生:θ等于60°, 等于120°.
师:这时θ和 是什么关系?
生:θ和 是互为补角.
师:再回答下列问题:
生:θ1等于45°, 1等于135°,θ1+ 1=180°;θ2等于30°, 2=150°,θ2+ 2=180°.
师:一般说来,当cosθ=-cos 时,角θ与角 是什么关系?
生:角θ与角 是互补的两个角.即一个为锐角,一个
为钝角,且θ+ =180°.
(关于钝角的三角函数还没有定义,所以这里采用从特殊到一般的方法使学生有所理解即可)
3.下列5个命题中正确的是
①对于实数p,q和向量,若p=q则p=q②对于向量与,若||=||则=③对于两个单位向量与,若|+|=2则=④对于两个单位向量与,若k=,则=
2.下列命题中,正确命题的个数为( A )
①若与是非零向量 ,且与共线时,则与必与或中之一方向相同;②若为单位向量,且∥则=|| ③··=|| ④若与共线,与共线,则与共线;⑤若平面内四点A.B.C.D,必有+=+
A 1 B 2 C 3 D 4
1.下面5个命题中正确的有( )
①=·=·; ②·=·=;③·(+)=·+·;
④·(·)=(·)·; ⑤.
A..①②⑤ B.①③⑤ C. ②③④ D. ①③
例1.对于任意非零向量与,求证:|||-|||≤|±|≤||+||
证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||
(3)两个非零向量与共线时,①与同向,则+的方向与.相同且|+|=||+||.②与异向时,则+的方向与模较大的向量方向相同,设||>||,则|+|=||-||.同理可证另一种情况也成立。
例2 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设=,=,=,
且||=2,||=1,| |=3,用与表示
解:如图建立平面直角坐标系xoy,其中, 是单位正交基底向量, 则B(0,1),C(-3,0),设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-),也就是= -, =, =-3所以-3=3+|即=3-3
例3.下面5个命题:①|·|=||·||②(·)=·③⊥(-),则·=· ④·=0,则|+|=|-|⑤·=0,则=或=,其中真命题是( )
A①②⑤ B ③④ C①③ D②④⑤
向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直
8. 数量积(点乘或内积)的概念,·=||||cos=xx+yy注意区别“实数与向量的乘法;向量与向量的乘法”
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com