闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤濠€閬嶅焵椤掑倹鍤€閻庢凹鍙冨畷宕囧鐎c劋姹楅梺鍦劋閸ㄥ綊宕愰悙宸富闁靛牆妫楃粭鍌滅磼閳ь剚绗熼埀顒€鐣峰⿰鍫晣闁绘垵妫欑€靛矂姊洪棃娑氬婵☆偅顨嗛幈銊槾缂佽鲸甯¢幃鈺呭礃閼碱兛绱濋梻浣虹帛娓氭宕抽敐鍡樺弿闁逞屽墴閺屾洟宕煎┑鍥舵¥闂佸憡蓱閹瑰洭寮婚埄鍐ㄧ窞閻忕偞鍨濆▽顏呯節閵忋垺鍤€婵☆偅绻傞悾宄扳攽閸♀晛鎮戦梺绯曞墲閸旀帞鑺辨繝姘拺闁告繂瀚埀顒佹倐閹ê鈹戠€e灚鏅滃銈嗗姂閸婃澹曟總绋跨骇闁割偅绋戞俊鐣屸偓瑙勬礀閻ジ鍩€椤掑喚娼愭繛鍙夅缚閺侇噣骞掑Δ瀣◤濠电娀娼ч鎰板极閸曨垱鐓㈡俊顖欒濡插嘲顭跨憴鍕婵﹥妞藉畷銊︾節閸曨厾绐楅梻浣呵圭€涒晜绻涙繝鍥х畾閻忕偠袙閺嬪酣鏌熼幆褜鍤熼柛姗€浜跺娲传閸曨剙鍋嶉梺鍛婃煥閻倿骞冨鈧幃鈺呮偨閻㈢绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄闁挎繂妫Λ鍕⒑閸濆嫷鍎庣紒鑸靛哺瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁诡垎鍐f寖缂備緡鍣崹鎶藉箲閵忕姭妲堥柕蹇曞Х椤撴椽姊洪崫鍕殜闁稿鎹囬弻娑㈠Χ閸涱垍褔鏌$仦鍓ф创濠碉紕鍏橀、娆撴偂鎼存ɑ瀚介梻鍌欐祰濡椼劎绮堟担璇ユ椽顢橀姀鐘烘憰闂佸搫娴勭槐鏇㈡偪閳ь剟姊洪崫鍕窛闁稿⿴鍋婃俊鐑芥晜鏉炴壆鐩庨梻浣瑰濡線顢氳閳诲秴顓兼径瀣幍濡炪倖姊婚悺鏂库枔濠婂應鍋撶憴鍕妞ゃ劌妫楅銉╁礋椤掑倻鐦堟繛杈剧到婢瑰﹤螞濠婂牊鈷掗柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剟鐛径鎰伋閻℃帊鐒﹀浠嬪极閸愵喖纾兼慨妯诲敾缁卞崬鈹戦悩顔肩伇闁糕晜鐗犲畷婵嬪即閵忕姴寮烽梺闈涱槴閺呮粓鎮¢悢鍏肩厵闂侇叏绠戦弸娑㈡煕閺傛鍎旈柡灞界Ч閺屻劎鈧綆浜炴导宀勬⒑鐠団€虫灈缂傚秴锕悰顔界瑹閳ь剟鐛幒妤€绠f繝鍨姉閳ь剝娅曠换婵嬫偨闂堟稐绮堕梺鐟板暱缁绘ê鐣峰┑鍡忔瀻闁规儳鐤囬幗鏇㈡⒑缂佹ɑ鈷掗柛妯犲懐鐭嗛柛鏇ㄥ灡閻撳繘鏌涢锝囩畺妞ゃ儲绮嶉妵鍕疀閵夛箑顏�
 0  252879  252887  252893  252897  252903  252905  252909  252915  252917  252923  252929  252933  252935  252939  252945  252947  252953  252957  252959  252963  252965  252969  252971  252973  252974  252975  252977  252978  252979  252981  252983  252987  252989  252993  252995  252999  253005  253007  253013  253017  253019  253023  253029  253035  253037  253043  253047  253049  253055  253059  253065  253073  447090 

4.公式:     当n为奇数时  

                        当n为偶数时 

试题详情

3.名称:叫做根式   n叫做根指数   a叫做被开方数

试题详情

2.求法:当n为奇数时:正数的n次方根为正数,负数的n次方根为负数

             记作:        例(略)

                 当n为偶数时,正数的n次方根有两个(互为相反数)

              记作:   

               负数没有偶次方根

               0的任何次方根为0

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炲墽娲存鐐达耿閹崇娀顢楁径瀣撴粓姊绘担瑙勫仩闁告柨绉堕幑銏ゅ礃椤斿槈锕傛煕閺囥劌鐏犻柛鎰ㄥ亾婵$偑鍊栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹鐓庘枖濞戙埄鏁勯柛鏇ㄥ幗瀹曟煡鏌涢埄鍐姇闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺闈╃稻濡炰粙寮诲☉銏℃櫜闁告侗鍠涚涵鈧紓鍌欐祰妞村摜鏁敓鐘茬畺闁冲搫鎳忛ˉ鍫熺箾閹寸偛绗氶柣搴濆嵆濮婄粯鎷呴崨濠冨創闂佹椿鍓欓妶绋跨暦娴兼潙鍐€妞ゆ挾濮寸粊锕傛⒑绾懏褰х紒鐘冲灩缁鈽夐姀鈾€鎷婚梺鍓插亞閸犳捇鍩婇弴鐔翠簻闁哄倸鐏濋顓熸叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍎戠徊钘壝洪敃鈧—鍐╃鐎n偅娅滈梺缁樺姈濞兼瑧娆㈤悙鐑樼厵闂侇叏绠戦崝锕傛煥閺囩偛鈧綊鎮¢弴銏$厸闁搞儯鍎辨俊濂告煟韫囨洖校濞e洤锕、鏇㈡晲韫囨埃鍋撻崸妤佺厸閻忕偛澧藉ú鎾煃閵夘垳鐣垫鐐差儏閳规垿宕堕埡鈧竟鏇犵磽閸屾艾鈧绮堟笟鈧、鏍川椤栨稑搴婇梺鍦濠㈡﹢鎮″鈧弻鐔告綇妤e啯顎嶉梺绋匡功閸忔﹢寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑閸涘﹥鐓ラ柟璇х磿閹广垹鈽夊锝呬壕婵炴垶鐟$紓姘舵煟椤撴粌鈧洟婀佸┑鐘诧工缁ㄨ偐鑺辩紒妯镐簻闁哄浂浜炵粙鑽ょ磼缂佹ḿ绠撴い顐g箞椤㈡﹢鎮㈤崜韫埛闂傚倸鍊烽懗鍓佸垝椤栨稓浠氶梺璇茬箰缁绘垿鎮烽埡浣烘殾闁规壆澧楅崐鐑芥煟閹寸們姘跺箯濞差亝鐓熼幖绮瑰墲鐠愨€斥攽椤旂偓鏆┑鈩冩尦瀹曟﹢鍩¢埀顒傛崲閸℃稒鐓熼柟閭﹀幗缂嶆垶绻涢幖顓炴灍妞ゃ劊鍎甸幃娆忣啅椤旂厧澹夋俊鐐€ф俊鍥ㄦ櫠濡ゅ懎绠氶柡鍐ㄧ墛閺呮煡鏌涢妷鈺婃閹兼潙锕濠氬磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑瀣櫇闁稿本姘ㄩˇ顓炩攽閻愬弶顥為柟绋挎憸缁牊寰勯幇顓犲帾闂佸壊鍋呯换鍐夐幘瓒佺懓饪伴崟顓犵厑闂侀潧娲ょ€氫即鐛Ο鍏煎磯闁烩晜甯囬崹浠嬪蓟濞戞鐔兼惞鐟欏嫭鍠栨俊鐐€戦崝濠囧磿閻㈢ǹ绠栨繛鍡樻尭缁犵敻鏌熼悜妯诲鞍妞ゆ柨瀚板娲礈瑜忕敮娑㈡煟濡ゅ啫鈻堢€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻閻愮儤鍊堕柛顐ゅ枔缁犻箖鎮楅悽鐧诲綊顢撳畝鍕厱婵炲棗绻愰弳娆愩亜椤愩垻绠婚柟鐓庣秺瀹曠兘顢橀悪鍛簥濠电姵顔栭崰妤呫€冮崨顓囨稑鈻庨幘鏉戜患闂佸壊鍋呭ú姗€鍩涢幋鐘电=濞达絿娅㈡笟娑欑箾閸喐顥堥柡灞诲姂瀵挳濡搁妶澶婁粣闂備胶绮笟妤呭窗濞戞氨涓嶆繛鎴炃氬Σ鍫熺箾閸℃ê鐏ュ┑顔芥倐閺岋絾鎯旈敍鍕殯闂佺ǹ楠稿畷顒冪亱閻庡厜鍋撻柛鏇ㄥ亞椤斿棗鈹戦悙鍙夆枙濞存粍绻堥崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢铏圭<闁绘ǹ娅曞畷宀勬煙椤旂瓔娈旀い顐g箞閹剝鎯旈敍鍕綁闂傚倷娴囧銊х矆娴h櫣鐭撻柣鐔煎亰閸ゆ洘銇勯弴妤€浜鹃悗瑙勬礃鐢帡銈导鏉戞そ闁告劦浜滅花銉╂⒒閸屾艾鈧绮堟笟鈧獮鏍敃閵堝棗浠忓銈嗗姧缁犳垹澹曢崸妤佺厵闁诡垱婢樿闂佺ǹ顑傞弲婊呮崲濞戞﹩鍟呮い鏃囧吹閸戝綊姊虹紒妯诲鞍缂佸鍨垮﹢渚€姊洪幐搴g畵闁瑰啿绻橀獮澶愬箹娴e憡鐎梺鍓插亝閹﹪寮崼鐔蜂汗闂傚倸鐗婄粙鎰垝鐠鸿 鏀介柣鎰级閳绘洟鏌涘▎蹇撴殻濠碘€崇摠缁楃喖鍩€椤掆偓椤曪絾绂掔€e灚鏅i梺缁樺姍濞佳囩嵁閹扮増鈷掑ù锝呮啞閸熺偤鏌涢弮鈧崹鍨暦濠靛棭鍚嬪璺侯儏閳ь剙鐖奸弻娑㈩敃閻樻彃濮曢梺绋匡功閺佸骞冨畡鎵虫瀻闊洦鎼╂禒鍓х磽娴f彃浜鹃梺鍛婂姀閺傚倹绂嶅⿰鍫熺厪濠电偛鐏濋崝鐢告椤掑澧い銊e劦閹瑧鎷犺閸氼偊鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冨▎鎾搭棃婵炴垶岣块鍥⒒閸屾艾鈧绮堟笟鈧獮澶愭晸閻樿尙顦梺纭呮彧缁犳垹绮堟径鎰婵烇綆鍓欐俊鑲╃棯閹呯Ш闁哄被鍔戦幃銈夊磼濞戞﹩浼�

试题详情

1.定义:若x叫做an次方根。

试题详情

教材P.17习题二4、5、6、7、8.

试题详情

(四)练习(P.14练习1、2.)

1.把一张长方形的纸对折两次,打开后如图1-44那样,说明为什么这些折痕是互相平行的?

答:把一张长方形的纸对折两次,打开后得4个全等的矩形,每个矩形的竖边是互相平行的,再应用平行公理,可得知它们的折痕是互相平行的.

△ABC≌△A′B′C′.

∴四边形BB′C′C是平行四边形.

∴BC=B′C′.

同理可证:AC=A′C′,AB=A′B′.

∴△ABC≌△A′B′C′.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炲墽娲存鐐达耿閹崇娀顢楁径瀣撴粓姊绘担瑙勫仩闁告柨绉堕幑銏ゅ礃椤斿槈锕傛煕閺囥劌鐏犻柛鎰ㄥ亾婵$偑鍊栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹鐓庘枖濞戙埄鏁勯柛鏇ㄥ幗瀹曟煡鏌涢埄鍐姇闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺闈╃稻濡炰粙寮诲☉銏℃櫜闁告侗鍠涚涵鈧紓鍌欐祰妞村摜鏁敓鐘茬畺闁冲搫鎳忛ˉ鍫熺箾閹寸偛绗氶柣搴濆嵆濮婄粯鎷呴崨濠冨創闂佹椿鍓欓妶绋跨暦娴兼潙鍐€妞ゆ挾濮寸粊锕傛⒑绾懏褰х紒鐘冲灩缁鈽夐姀鈾€鎷婚梺鍓插亞閸犳捇鍩婇弴鐔翠簻闁哄倸鐏濋顓熸叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍎戠徊钘壝洪敃鈧—鍐╃鐎n偅娅滈梺缁樺姈濞兼瑧娆㈤悙鐑樼厵闂侇叏绠戦崝锕傛煥閺囩偛鈧綊鎮¢弴銏$厸闁搞儯鍎辨俊濂告煟韫囨洖校濞e洤锕、鏇㈡晲韫囨埃鍋撻崸妤佺厸閻忕偛澧藉ú鎾煃閵夘垳鐣垫鐐差儏閳规垿宕堕埡鈧竟鏇犵磽閸屾艾鈧绮堟笟鈧、鏍川椤栨稑搴婇梺鍦濠㈡﹢鎮″鈧弻鐔告綇妤e啯顎嶉梺绋匡功閸忔﹢寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑閸涘﹥鐓ラ柟璇х磿閹广垹鈽夊锝呬壕婵炴垶鐟$紓姘舵煟椤撴粌鈧洟婀佸┑鐘诧工缁ㄨ偐鑺辩紒妯镐簻闁哄浂浜炵粙鑽ょ磼缂佹ḿ绠撴い顐g箞椤㈡﹢鎮㈤崜韫埛闂傚倸鍊烽懗鍓佸垝椤栨稓浠氶梺璇茬箰缁绘垿鎮烽埡浣烘殾闁规壆澧楅崐鐑芥煟閹寸們姘跺箯濞差亝鐓熼幖绮瑰墲鐠愨€斥攽椤旂偓鏆┑鈩冩尦瀹曟﹢鍩¢埀顒傛崲閸℃稒鐓熼柟閭﹀幗缂嶆垶绻涢幖顓炴灍妞ゃ劊鍎甸幃娆忣啅椤旂厧澹夋俊鐐€ф俊鍥ㄦ櫠濡ゅ懎绠氶柡鍐ㄧ墛閺呮煡鏌涢妷鈺婃閹兼潙锕濠氬磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑瀣櫇闁稿本姘ㄩˇ顓炩攽閻愬弶顥為柟绋挎憸缁牊寰勯幇顓犲帾闂佸壊鍋呯换鍐夐幘瓒佺懓饪伴崟顓犵厑闂侀潧娲ょ€氫即鐛Ο鍏煎磯闁烩晜甯囬崹浠嬪蓟濞戞鐔兼惞鐟欏嫭鍠栨俊鐐€戦崝濠囧磿閻㈢ǹ绠栨繛鍡樻尭缁犵敻鏌熼悜妯诲鞍妞ゆ柨瀚板娲礈瑜忕敮娑㈡煟濡ゅ啫鈻堢€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻閻愮儤鍊堕柛顐ゅ枔缁犻箖鎮楅悽鐧诲綊顢撳畝鍕厱婵炲棗绻愰弳娆愩亜椤愩垻绠婚柟鐓庣秺瀹曠兘顢橀悪鍛簥濠电姵顔栭崰妤呫€冮崨顓囨稑鈻庨幘鏉戜患闂佸壊鍋呭ú姗€鍩涢幋鐘电=濞达絿娅㈡笟娑欑箾閸喐顥堥柡灞诲姂瀵挳濡搁妶澶婁粣闂備胶绮笟妤呭窗濞戞氨涓嶆繛鎴炃氬Σ鍫熺箾閸℃ê鐏ュ┑顔芥倐閺岋絾鎯旈敍鍕殯闂佺ǹ楠稿畷顒冪亱閻庡厜鍋撻柛鏇ㄥ亞椤斿棗鈹戦悙鍙夆枙濞存粍绻堥崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢铏圭<闁绘ǹ娅曞畷宀勬煙椤旂瓔娈旀い顐g箞閹剝鎯旈敍鍕綁闂傚倷娴囧銊х矆娴h櫣鐭撻柣鐔煎亰閸ゆ洘銇勯弴妤€浜鹃悗瑙勬礃鐢帡銈导鏉戞そ闁告劦浜滅花銉╂⒒閸屾艾鈧绮堟笟鈧獮鏍敃閵堝棗浠忓銈嗗姧缁犳垹澹曢崸妤佺厵闁诡垱婢樿闂佺ǹ顑傞弲婊呮崲濞戞﹩鍟呮い鏃囧吹閸戝綊姊虹紒妯诲鞍缂佸鍨垮﹢渚€姊洪幐搴g畵闁瑰啿绻橀獮澶愬箹娴e憡鐎梺鍓插亝閹﹪寮崼鐔蜂汗闂傚倸鐗婄粙鎰垝鐠鸿 鏀介柣鎰级閳绘洟鏌涘▎蹇撴殻濠碘€崇摠缁楃喖鍩€椤掆偓椤曪絾绂掔€e灚鏅i梺缁樺姍濞佳囩嵁閹扮増鈷掑ù锝呮啞閸熺偤鏌涢弮鈧崹鍨暦濠靛棭鍚嬪璺侯儏閳ь剙鐖奸弻娑㈩敃閻樻彃濮曢梺绋匡功閺佸骞冨畡鎵虫瀻闊洦鎼╂禒鍓х磽娴f彃浜鹃梺鍛婂姀閺傚倹绂嶅⿰鍫熺厪濠电偛鐏濋崝鐢告椤掑澧い銊e劦閹瑧鎷犺閸氼偊鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冨▎鎾搭棃婵炴垶岣块鍥⒒閸屾艾鈧绮堟笟鈧獮澶愭晸閻樿尙顦梺纭呮彧缁犳垹绮堟径鎰婵烇綆鍓欐俊鑲╃棯閹呯Ш闁哄被鍔戦幃銈夊磼濞戞﹩浼�

试题详情

(三)等角定理

师:平行公理不仅是今后论证平行问题的主要依据,也是证明等角定理的基础.

等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.

已知:∠BAC和∠B′A′C′的边AB∥A′B′,AC∥A′C′,并且方向相同.

求证:∠BAC=∠B′A′C′.

师分析:在平面内,这个结论我们已经证明成立了.在空间中,这个结论是否成立,还需通过证明.要证明两个角相等,常用的方法有:证明两个三角形全等或相似,则对应角相等;证明两直线平行,则同位角、内错角相等;证明平行四边形,则它的对角相等,等等.根据题意,我们只能证明两个三角形全等或相似,为此需要构造两个三角形,这也是本题证明的关键所在.

证明:对于∠BAC和∠B′A′C′都在同一平面内的情况,在平面几何中已经证明.下面我们证明两个角不在同一平面内的情况.

如图1-43,在AB、A′B′,AC、A′C′上分别取AD=A′D′、AE=A′E′,连结AA′、DD′、EE′,DE、D′E′.

∵AB∥A′B′, AD=A′D′,

∴AA′DD′是平行四边形.

根据公理4,得:DD′∥EE′.

又可得:DD′=EE′

∴四边形EE′D′D是平行四边形.

∴ED=E′D′,可得:△ADE≌△A′D′E′.

∴∠BAC=∠B′A′C′.

师:若把上面两个角的两边反向延长,就得出下面的推论.

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.

从上面定理的证明可以知道:平面里的定义、定理等,对于非平面图形,需要经过证明才能应用.

下面请同学们完成练习.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炲墽娲存鐐达耿閹崇娀顢楁径瀣撴粓姊绘担瑙勫仩闁告柨绉堕幑銏ゅ礃椤斿槈锕傛煕閺囥劌鐏犻柛鎰ㄥ亾婵$偑鍊栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹鐓庘枖濞戙埄鏁勯柛鏇ㄥ幗瀹曟煡鏌涢埄鍐姇闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺闈╃稻濡炰粙寮诲☉銏℃櫜闁告侗鍠涚涵鈧紓鍌欐祰妞村摜鏁敓鐘茬畺闁冲搫鎳忛ˉ鍫熺箾閹寸偛绗氶柣搴濆嵆濮婄粯鎷呴崨濠冨創闂佹椿鍓欓妶绋跨暦娴兼潙鍐€妞ゆ挾濮寸粊锕傛⒑绾懏褰х紒鐘冲灩缁鈽夐姀鈾€鎷婚梺鍓插亞閸犳捇鍩婇弴鐔翠簻闁哄倸鐏濋顓熸叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍎戠徊钘壝洪敃鈧—鍐╃鐎n偅娅滈梺缁樺姈濞兼瑧娆㈤悙鐑樼厵闂侇叏绠戦崝锕傛煥閺囩偛鈧綊鎮¢弴銏$厸闁搞儯鍎辨俊濂告煟韫囨洖校濞e洤锕、鏇㈡晲韫囨埃鍋撻崸妤佺厸閻忕偛澧藉ú鎾煃閵夘垳鐣垫鐐差儏閳规垿宕堕埡鈧竟鏇犵磽閸屾艾鈧绮堟笟鈧、鏍川椤栨稑搴婇梺鍦濠㈡﹢鎮″鈧弻鐔告綇妤e啯顎嶉梺绋匡功閸忔﹢寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑閸涘﹥鐓ラ柟璇х磿閹广垹鈽夊锝呬壕婵炴垶鐟$紓姘舵煟椤撴粌鈧洟婀佸┑鐘诧工缁ㄨ偐鑺辩紒妯镐簻闁哄浂浜炵粙鑽ょ磼缂佹ḿ绠撴い顐g箞椤㈡﹢鎮㈤崜韫埛闂傚倸鍊烽懗鍓佸垝椤栨稓浠氶梺璇茬箰缁绘垿鎮烽埡浣烘殾闁规壆澧楅崐鐑芥煟閹寸們姘跺箯濞差亝鐓熼幖绮瑰墲鐠愨€斥攽椤旂偓鏆┑鈩冩尦瀹曟﹢鍩¢埀顒傛崲閸℃稒鐓熼柟閭﹀幗缂嶆垶绻涢幖顓炴灍妞ゃ劊鍎甸幃娆忣啅椤旂厧澹夋俊鐐€ф俊鍥ㄦ櫠濡ゅ懎绠氶柡鍐ㄧ墛閺呮煡鏌涢妷鈺婃閹兼潙锕濠氬磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑瀣櫇闁稿本姘ㄩˇ顓炩攽閻愬弶顥為柟绋挎憸缁牊寰勯幇顓犲帾闂佸壊鍋呯换鍐夐幘瓒佺懓饪伴崟顓犵厑闂侀潧娲ょ€氫即鐛Ο鍏煎磯闁烩晜甯囬崹浠嬪蓟濞戞鐔兼惞鐟欏嫭鍠栨俊鐐€戦崝濠囧磿閻㈢ǹ绠栨繛鍡樻尭缁犵敻鏌熼悜妯诲鞍妞ゆ柨瀚板娲礈瑜忕敮娑㈡煟濡ゅ啫鈻堢€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻閻愮儤鍊堕柛顐ゅ枔缁犻箖鎮楅悽鐧诲綊顢撳畝鍕厱婵炲棗绻愰弳娆愩亜椤愩垻绠婚柟鐓庣秺瀹曠兘顢橀悪鍛簥濠电姵顔栭崰妤呫€冮崨顓囨稑鈻庨幘鏉戜患闂佸壊鍋呭ú姗€鍩涢幋鐘电=濞达絿娅㈡笟娑欑箾閸喐顥堥柡灞诲姂瀵挳濡搁妶澶婁粣闂備胶绮笟妤呭窗濞戞氨涓嶆繛鎴炃氬Σ鍫熺箾閸℃ê鐏ュ┑顔芥倐閺岋絾鎯旈敍鍕殯闂佺ǹ楠稿畷顒冪亱閻庡厜鍋撻柛鏇ㄥ亞椤斿棗鈹戦悙鍙夆枙濞存粍绻堥崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢铏圭<闁绘ǹ娅曞畷宀勬煙椤旂瓔娈旀い顐g箞閹剝鎯旈敍鍕綁闂傚倷娴囧銊х矆娴h櫣鐭撻柣鐔煎亰閸ゆ洘銇勯弴妤€浜鹃悗瑙勬礃鐢帡銈导鏉戞そ闁告劦浜滅花銉╂⒒閸屾艾鈧绮堟笟鈧獮鏍敃閵堝棗浠忓銈嗗姧缁犳垹澹曢崸妤佺厵闁诡垱婢樿闂佺ǹ顑傞弲婊呮崲濞戞﹩鍟呮い鏃囧吹閸戝綊姊虹紒妯诲鞍缂佸鍨垮﹢渚€姊洪幐搴g畵闁瑰啿绻橀獮澶愬箹娴e憡鐎梺鍓插亝閹﹪寮崼鐔蜂汗闂傚倸鐗婄粙鎰垝鐠鸿 鏀介柣鎰级閳绘洟鏌涘▎蹇撴殻濠碘€崇摠缁楃喖鍩€椤掆偓椤曪絾绂掔€e灚鏅i梺缁樺姍濞佳囩嵁閹扮増鈷掑ù锝呮啞閸熺偤鏌涢弮鈧崹鍨暦濠靛棭鍚嬪璺侯儏閳ь剙鐖奸弻娑㈩敃閻樻彃濮曢梺绋匡功閺佸骞冨畡鎵虫瀻闊洦鎼╂禒鍓х磽娴f彃浜鹃梺鍛婂姀閺傚倹绂嶅⿰鍫熺厪濠电偛鐏濋崝鐢告椤掑澧い銊e劦閹瑧鎷犺閸氼偊鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冨▎鎾搭棃婵炴垶岣块鍥⒒閸屾艾鈧绮堟笟鈧獮澶愭晸閻樿尙顦梺纭呮彧缁犳垹绮堟径鎰婵烇綆鍓欐俊鑲╃棯閹呯Ш闁哄被鍔戦幃銈夊磼濞戞﹩浼�

试题详情

(二)平行公理

师:在平面几何中,如图1-40,若a∥b,c∥b,则a与c平行吗?

生:平行.

师:也就是说,在平面中,若两条直线a、c都和第三条直线b平行,则a∥c.这个命题在空间中是否成立呢?

师:实际上,在空间中,若a∥b,c∥b,则a∥c也成立.我们把这个结论作为一个公理,不必证明,可直接应用.

平行公理:平行于同一条直线的两条直线互相平行.

如图1-41,三棱镜的三条棱,若AA′∥BB′,CC′∥BB′,则有AA′∥CC′.

下面请同学们完成下列的例题,巩固应用平行公理.

例已知四边形ABCD是空间四边形(四个顶点不共面的图1-41四边形),E、H分别是边AB、AD的中点,F、G分别是边CB、CD

师分析:要证明四边形EFGH是梯形,即要证明四边形EFGH的一组对边平行,另一组对边不平行;或证明一组对边平行且不相等.具体用哪一种方法,我们来分析一下题意:E、H分别是边AB、AD的中

证明:如图1-42,连结BD.

∵EH是△ABD的中位线,

根据公理4,EH∥FG,

又∵FG>EH,

∴四边形EFGH是梯形.

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炲墽娲存鐐达耿閹崇娀顢楁径瀣撴粓姊绘担瑙勫仩闁告柨绉堕幑銏ゅ礃椤斿槈锕傛煕閺囥劌鐏犻柛鎰ㄥ亾婵$偑鍊栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹鐓庘枖濞戙埄鏁勯柛鏇ㄥ幗瀹曟煡鏌涢埄鍐姇闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺闈╃稻濡炰粙寮诲☉銏℃櫜闁告侗鍠涚涵鈧紓鍌欐祰妞村摜鏁敓鐘茬畺闁冲搫鎳忛ˉ鍫熺箾閹寸偛绗氶柣搴濆嵆濮婄粯鎷呴崨濠冨創闂佹椿鍓欓妶绋跨暦娴兼潙鍐€妞ゆ挾濮寸粊锕傛⒑绾懏褰х紒鐘冲灩缁鈽夐姀鈾€鎷婚梺鍓插亞閸犳捇鍩婇弴鐔翠簻闁哄倸鐏濋顓熸叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍎戠徊钘壝洪敃鈧—鍐╃鐎n偅娅滈梺缁樺姈濞兼瑧娆㈤悙鐑樼厵闂侇叏绠戦崝锕傛煥閺囩偛鈧綊鎮¢弴銏$厸闁搞儯鍎辨俊濂告煟韫囨洖校濞e洤锕、鏇㈡晲韫囨埃鍋撻崸妤佺厸閻忕偛澧藉ú鎾煃閵夘垳鐣垫鐐差儏閳规垿宕堕埡鈧竟鏇犵磽閸屾艾鈧绮堟笟鈧、鏍川椤栨稑搴婇梺鍦濠㈡﹢鎮″鈧弻鐔告綇妤e啯顎嶉梺绋匡功閸忔﹢寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑閸涘﹥鐓ラ柟璇х磿閹广垹鈽夊锝呬壕婵炴垶鐟$紓姘舵煟椤撴粌鈧洟婀佸┑鐘诧工缁ㄨ偐鑺辩紒妯镐簻闁哄浂浜炵粙鑽ょ磼缂佹ḿ绠撴い顐g箞椤㈡﹢鎮㈤崜韫埛闂傚倸鍊烽懗鍓佸垝椤栨稓浠氶梺璇茬箰缁绘垿鎮烽埡浣烘殾闁规壆澧楅崐鐑芥煟閹寸們姘跺箯濞差亝鐓熼幖绮瑰墲鐠愨€斥攽椤旂偓鏆┑鈩冩尦瀹曟﹢鍩¢埀顒傛崲閸℃稒鐓熼柟閭﹀幗缂嶆垶绻涢幖顓炴灍妞ゃ劊鍎甸幃娆忣啅椤旂厧澹夋俊鐐€ф俊鍥ㄦ櫠濡ゅ懎绠氶柡鍐ㄧ墛閺呮煡鏌涢妷鈺婃閹兼潙锕濠氬磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑瀣櫇闁稿本姘ㄩˇ顓炩攽閻愬弶顥為柟绋挎憸缁牊寰勯幇顓犲帾闂佸壊鍋呯换鍐夐幘瓒佺懓饪伴崟顓犵厑闂侀潧娲ょ€氫即鐛Ο鍏煎磯闁烩晜甯囬崹浠嬪蓟濞戞鐔兼惞鐟欏嫭鍠栨俊鐐€戦崝濠囧磿閻㈢ǹ绠栨繛鍡樻尭缁犵敻鏌熼悜妯诲鞍妞ゆ柨瀚板娲礈瑜忕敮娑㈡煟濡ゅ啫鈻堢€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻閻愮儤鍊堕柛顐ゅ枔缁犻箖鎮楅悽鐧诲綊顢撳畝鍕厱婵炲棗绻愰弳娆愩亜椤愩垻绠婚柟鐓庣秺瀹曠兘顢橀悪鍛簥濠电姵顔栭崰妤呫€冮崨顓囨稑鈻庨幘鏉戜患闂佸壊鍋呭ú姗€鍩涢幋鐘电=濞达絿娅㈡笟娑欑箾閸喐顥堥柡灞诲姂瀵挳濡搁妶澶婁粣闂備胶绮笟妤呭窗濞戞氨涓嶆繛鎴炃氬Σ鍫熺箾閸℃ê鐏ュ┑顔芥倐閺岋絾鎯旈敍鍕殯闂佺ǹ楠稿畷顒冪亱閻庡厜鍋撻柛鏇ㄥ亞椤斿棗鈹戦悙鍙夆枙濞存粍绻堥崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢铏圭<闁绘ǹ娅曞畷宀勬煙椤旂瓔娈旀い顐g箞閹剝鎯旈敍鍕綁闂傚倷娴囧銊х矆娴h櫣鐭撻柣鐔煎亰閸ゆ洘銇勯弴妤€浜鹃悗瑙勬礃鐢帡銈导鏉戞そ闁告劦浜滅花銉╂⒒閸屾艾鈧绮堟笟鈧獮鏍敃閵堝棗浠忓銈嗗姧缁犳垹澹曢崸妤佺厵闁诡垱婢樿闂佺ǹ顑傞弲婊呮崲濞戞﹩鍟呮い鏃囧吹閸戝綊姊虹紒妯诲鞍缂佸鍨垮﹢渚€姊洪幐搴g畵闁瑰啿绻橀獮澶愬箹娴e憡鐎梺鍓插亝閹﹪寮崼鐔蜂汗闂傚倸鐗婄粙鎰垝鐠鸿 鏀介柣鎰级閳绘洟鏌涘▎蹇撴殻濠碘€崇摠缁楃喖鍩€椤掆偓椤曪絾绂掔€e灚鏅i梺缁樺姍濞佳囩嵁閹扮増鈷掑ù锝呮啞閸熺偤鏌涢弮鈧崹鍨暦濠靛棭鍚嬪璺侯儏閳ь剙鐖奸弻娑㈩敃閻樻彃濮曢梺绋匡功閺佸骞冨畡鎵虫瀻闊洦鎼╂禒鍓х磽娴f彃浜鹃梺鍛婂姀閺傚倹绂嶅⿰鍫熺厪濠电偛鐏濋崝鐢告椤掑澧い銊e劦閹瑧鎷犺閸氼偊鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冨▎鎾搭棃婵炴垶岣块鍥⒒閸屾艾鈧绮堟笟鈧獮澶愭晸閻樿尙顦梺纭呮彧缁犳垹绮堟径鎰婵烇綆鍓欐俊鑲╃棯閹呯Ш闁哄被鍔戦幃銈夊磼濞戞﹩浼�

试题详情

(一)复习两条直线的位置关系(幻灯显示)

师:空间中两条直线的位置关系有哪几种?

生:三种:相交、平行、异面.异面直线是指不同在任何一个平面内的两条直线.相交直线和平行直线也称为共面直线.

师:异面直线的画法常用的有哪几种?

生:三种.如图1-38,a与b都是异面直线.

师:如何判定两条直线是异面直线?

生:(1)间接证法:根据定义,一般用反证法.

(2)直接证法:根据例题结论:过平面外一点与平面内一点的

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炲墽娲存鐐达耿閹崇娀顢楁径瀣撴粓姊绘担瑙勫仩闁告柨绉堕幑銏ゅ礃椤斿槈锕傛煕閺囥劌鐏犻柛鎰ㄥ亾婵$偑鍊栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹鐓庘枖濞戙埄鏁勯柛鏇ㄥ幗瀹曟煡鏌涢埄鍐姇闁绘挸绻橀弻娑㈩敃閿濆洨鐣洪梺闈╃稻濡炰粙寮诲☉銏℃櫜闁告侗鍠涚涵鈧紓鍌欐祰妞村摜鏁敓鐘茬畺闁冲搫鎳忛ˉ鍫熺箾閹寸偛绗氶柣搴濆嵆濮婄粯鎷呴崨濠冨創闂佹椿鍓欓妶绋跨暦娴兼潙鍐€妞ゆ挾濮寸粊锕傛⒑绾懏褰х紒鐘冲灩缁鈽夐姀鈾€鎷婚梺鍓插亞閸犳捇鍩婇弴鐔翠簻闁哄倸鐏濋顓熸叏婵犲嫮甯涢柟宄版嚇瀹曘劍绻濋崒娑欑暭婵犵數鍎戠徊钘壝洪敃鈧—鍐╃鐎n偅娅滈梺缁樺姈濞兼瑧娆㈤悙鐑樼厵闂侇叏绠戦崝锕傛煥閺囩偛鈧綊鎮¢弴銏$厸闁搞儯鍎辨俊濂告煟韫囨洖校濞e洤锕、鏇㈡晲韫囨埃鍋撻崸妤佺厸閻忕偛澧藉ú鎾煃閵夘垳鐣垫鐐差儏閳规垿宕堕埡鈧竟鏇犵磽閸屾艾鈧绮堟笟鈧、鏍川椤栨稑搴婇梺鍦濠㈡﹢鎮″鈧弻鐔告綇妤e啯顎嶉梺绋匡功閸忔﹢寮婚妶鍥ф瀳闁告鍋涢~顐︽⒑閸涘﹥鐓ラ柟璇х磿閹广垹鈽夊锝呬壕婵炴垶鐟$紓姘舵煟椤撴粌鈧洟婀佸┑鐘诧工缁ㄨ偐鑺辩紒妯镐簻闁哄浂浜炵粙鑽ょ磼缂佹ḿ绠撴い顐g箞椤㈡﹢鎮㈤崜韫埛闂傚倸鍊烽懗鍓佸垝椤栨稓浠氶梺璇茬箰缁绘垿鎮烽埡浣烘殾闁规壆澧楅崐鐑芥煟閹寸們姘跺箯濞差亝鐓熼幖绮瑰墲鐠愨€斥攽椤旂偓鏆┑鈩冩尦瀹曟﹢鍩¢埀顒傛崲閸℃稒鐓熼柟閭﹀幗缂嶆垶绻涢幖顓炴灍妞ゃ劊鍎甸幃娆忣啅椤旂厧澹夋俊鐐€ф俊鍥ㄦ櫠濡ゅ懎绠氶柡鍐ㄧ墛閺呮煡鏌涢妷鈺婃閹兼潙锕濠氬磼濞嗘帒鍘$紓渚囧櫘閸ㄨ泛鐣峰┑瀣櫇闁稿本姘ㄩˇ顓炩攽閻愬弶顥為柟绋挎憸缁牊寰勯幇顓犲帾闂佸壊鍋呯换鍐夐幘瓒佺懓饪伴崟顓犵厑闂侀潧娲ょ€氫即鐛Ο鍏煎磯闁烩晜甯囬崹浠嬪蓟濞戞鐔兼惞鐟欏嫭鍠栨俊鐐€戦崝濠囧磿閻㈢ǹ绠栨繛鍡樻尭缁犵敻鏌熼悜妯诲鞍妞ゆ柨瀚板娲礈瑜忕敮娑㈡煟濡ゅ啫鈻堢€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻閻愮儤鍊堕柛顐ゅ枔缁犻箖鎮楅悽鐧诲綊顢撳畝鍕厱婵炲棗绻愰弳娆愩亜椤愩垻绠婚柟鐓庣秺瀹曠兘顢橀悪鍛簥濠电姵顔栭崰妤呫€冮崨顓囨稑鈻庨幘鏉戜患闂佸壊鍋呭ú姗€鍩涢幋鐘电=濞达絿娅㈡笟娑欑箾閸喐顥堥柡灞诲姂瀵挳濡搁妶澶婁粣闂備胶绮笟妤呭窗濞戞氨涓嶆繛鎴炃氬Σ鍫熺箾閸℃ê鐏ュ┑顔芥倐閺岋絾鎯旈敍鍕殯闂佺ǹ楠稿畷顒冪亱閻庡厜鍋撻柛鏇ㄥ亞椤斿棗鈹戦悙鍙夆枙濞存粍绻堥崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊宕濋悢铏圭<闁绘ǹ娅曞畷宀勬煙椤旂瓔娈旀い顐g箞閹剝鎯旈敍鍕綁闂傚倷娴囧銊х矆娴h櫣鐭撻柣鐔煎亰閸ゆ洘銇勯弴妤€浜鹃悗瑙勬礃鐢帡銈导鏉戞そ闁告劦浜滅花銉╂⒒閸屾艾鈧绮堟笟鈧獮鏍敃閵堝棗浠忓銈嗗姧缁犳垹澹曢崸妤佺厵闁诡垱婢樿闂佺ǹ顑傞弲婊呮崲濞戞﹩鍟呮い鏃囧吹閸戝綊姊虹紒妯诲鞍缂佸鍨垮﹢渚€姊洪幐搴g畵闁瑰啿绻橀獮澶愬箹娴e憡鐎梺鍓插亝閹﹪寮崼鐔蜂汗闂傚倸鐗婄粙鎰垝鐠鸿 鏀介柣鎰级閳绘洟鏌涘▎蹇撴殻濠碘€崇摠缁楃喖鍩€椤掆偓椤曪絾绂掔€e灚鏅i梺缁樺姍濞佳囩嵁閹扮増鈷掑ù锝呮啞閸熺偤鏌涢弮鈧崹鍨暦濠靛棭鍚嬪璺侯儏閳ь剙鐖奸弻娑㈩敃閻樻彃濮曢梺绋匡功閺佸骞冨畡鎵虫瀻闊洦鎼╂禒鍓х磽娴f彃浜鹃梺鍛婂姀閺傚倹绂嶅⿰鍫熺厪濠电偛鐏濋崝鐢告椤掑澧い銊e劦閹瑧鎷犺閸氼偊鎮楀▓鍨灆缂侇喗鐟╅妴浣割潨閳ь剟骞冨▎鎾搭棃婵炴垶岣块鍥⒒閸屾艾鈧绮堟笟鈧獮澶愭晸閻樿尙顦梺纭呮彧缁犳垹绮堟径鎰婵烇綆鍓欐俊鑲╃棯閹呯Ш闁哄被鍔戦幃銈夊磼濞戞﹩浼�

试题详情


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆戠矆閸愨斂浜滈柡鍥ф濞层倝鎮″鈧弻鐔告綇妤e啯顎嶉梺绋款儐閸旀瑩寮诲☉妯锋瀻闊浄绲炬晥闂備浇顕栭崰妤呮偡瑜忓Σ鎰板箻鐎涙ê顎撻梺鍛婄箓鐎氱兘鍩€椤掆偓閻倿寮诲☉銏犖╅柕澹啰鍘介柣搴㈩問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷