0  253162  253170  253176  253180  253186  253188  253192  253198  253200  253206  253212  253216  253218  253222  253228  253230  253236  253240  253242  253246  253248  253252  253254  253256  253257  253258  253260  253261  253262  253264  253266  253270  253272  253276  253278  253282  253288  253290  253296  253300  253302  253306  253312  253318  253320  253326  253330  253332  253338  253342  253348  253356  447090 

32、(长春07)如图①,在Rt△ABC中,∠C90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点DEF分别在ACABBC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2)

(1)h等于30时,求yx的函数关系式(不要求写出自变量x的取值范围);

(2)(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;

(3)yx的函数图象如图②所示,求此时h的值.

(参考公式:二次函数yax2+bx+c,当时,y最大().)

 

试题详情

31、(08聊城)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?

(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

 

试题详情

30、(08邵阳)如图,是竖立在公路两侧,且架设了跨过公路的高压电线的电杆,米.现在点处观测电杆的视角为,视线的夹角为

.以点为坐标原点,向右的水平方向为轴的正方向,建立平面直角坐标系.

(1)求电杆之间的距离和点的坐标;

(2)在今年年初的冰雪灾害中,高压电线由于结冰下垂近似成抛物线(为常数).在通电情况,高压电线周围12米内为非安全区域.请问3.2米高的车辆从高压电线下方通过时,是否有危险,并说明理由.

温馨提示:[抛物线()的顶点坐标

.]

试题详情

29、(扬州07)连接上海市区到浦东国际机场的磁悬浮轨道全长约为,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需秒,在这段时间内记录下下列数据:

时间(秒)
0
50
100
150
200
速度(米/秒)
0
30
60
90
120
路程(米)
0
750
3000
6750
12000

(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段()速度与时间的函数关系、路程与时间的函数关系.

(2)最新研究表明,此种列车的稳定运行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制动减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?

(3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离(米)与时间(秒)的函数关系式(不需要写出过程)

试题详情

28、(08扬州)红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:

时间t(天)
1
3
5
10
36

日销售量m(件)
94
90
86
76
24

未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为(且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为(且t为整数)。下面我们就来研究销售这种商品的有关问题:

(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;

(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?

(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程。公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围。

试题详情

27、(08河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为(吨)时,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)

(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;

(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;

(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?

参考公式:抛物线的顶点坐标是

试题详情

26、(05潍坊)某工厂生产的某种产品按质量分为个档次,生产第一档次(即最低档次)的产品一天生产件,每件利润元,每提高一个档次,利润每件增加元.

(1)每件利润为元时,此产品质量在第几档次?

(2)由于生产工序不同,此产品每提高一个档次,一天产量减少件.若生产第档的产品一天的总利润为元(其中为正整数,且),求出关于的函数关系式;若生产某档次产品一天的总利润为元,该工厂生产的是第几档次的产品?

试题详情

25、(03河北)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产。已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为元,年销售量为万件,年获利(年获利=年销售额-生产成本-投资)万元。

(1)试写出之间的函数关系式;(不必写出的取值范围)

(2)试写出之间的函数关系式;(不必写出的取值范围)

(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件?

(4)公司计划:在第一年按年获利最大确定的销售单价进行销售,第二年年获利不低于1130万元。请你借助函数的大致图象说明,第二年的销售单价(元)应确定在什么范围内?

试题详情

24、(河北05)某机械租赁公司有同一型号的机械设备40套。经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出。在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元。设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元)。

(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费

(2)求y与x之间的二次函数关系式;

(3)当月租金分别为300元和350元式,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;

(4)请把(2)中所求出的二次函数配方成的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?

试题详情

23、(06河北)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).

(1)当每吨售价是240元时,计算此时的月销售量;

(2)求出yx的函数关系式(不要求写出x的取值范围);

(3)该经销店要获得最大月利润,售价应定为每吨多少元?

(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.

试题详情


同步练习册答案