0  254340  254348  254354  254358  254364  254366  254370  254376  254378  254384  254390  254394  254396  254400  254406  254408  254414  254418  254420  254424  254426  254430  254432  254434  254435  254436  254438  254439  254440  254442  254444  254448  254450  254454  254456  254460  254466  254468  254474  254478  254480  254484  254490  254496  254498  254504  254508  254510  254516  254520  254526  254534  447090 

5.下列叙述中错误的是 (   )

A.原子半径:Cl>S>O      B.还原性:Na>Mg>Al

C.稳定性:HF>HCl>HBr     D.酸性:HClO4>H2SO4>H3PO4

试题详情

4.根据下列微粒结构示意图的共同特征,可以把              

三种微粒归为一类。下列微粒中可以归为一类的是  (   )

 

A.        B.         C.          D.     

试题详情

3.含6.02×1023个中子的Li+的质量是    (   )

A.  B.4.7g   C.7.4g   D.g

试题详情

2.对于  A ZX 和A+1  ZX+  两种粒子,下列叙述正确的是    (   )

A.质子数一定相同,质量数和中子数一定不同

B.化学性质几乎相同

C.一定都由质子、中子、电子构成

D.核电荷数,核外电子数一定相同

试题详情

1.某粒子含有6个质子,7个中子,电荷为0,则它的化学符号是  (   )

A.  13Al    B.13Al     C.13  C     D. 13C

试题详情

25.(09年重庆卷)(19分)如题25图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场。已知HO=d,HS=2d,=90°。(忽略粒子所受重力)

(1)求偏转电场场强E0的大小以及HM与MN的夹角

(2)求质量为m的离子在磁场中做圆周运动的半径;

(3)若质量为4m的离子垂直打在NQ的中点处,质量为16m的离子打在处。求之间的距离以及能打在NQ上的正离子的质量范围。

解析:

试题详情

25.(09年四川卷)(20分)如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q=0.2 C.将弹簧拉至水平后,以初速度V0=20 m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V=15 m/s.若O、O1相距R=1.5 m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1 kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r=0.5 m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=10 m/s2。那么,

(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?

(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。

 (3)若题中各量为变量,在保证小球P、N碰撞后某一时刻具有相同速度的前提下,请推导出r的表达式(要求用B、q、m、θ表示,其中θ为小球N的运动速度与水平方向的夹角)。

解析:

(1)设弹簧的弹力做功为W,有:          

        ①

代入数据,得:W=J          ②

(2)由题给条件知,N碰后作平抛运动,P所受电场力和重力平衡,P带正电荷。设P、N碰后的速度大小分别为v1和V,并令水平向右为正方向,有:   ③

而:                ④

若P、N碰后速度同向时,计算可得V<v1,这种碰撞不能实现。P、N碰后瞬时必为反向运动。有:           ⑤

P、N速度相同时,N经过的时间为,P经过的时间为。设此时N的速度V1的方向与水平方向的夹角为,有:

                   ⑥

              ⑦

代入数据,得:             ⑧

对小球P,其圆周运动的周期为T,有:

                  ⑨

经计算得: <T,

P经过时,对应的圆心角为,有:      ⑩

当B的方向垂直纸面朝外时,P、N的速度相同,如图可知,有:

联立相关方程得:

比较得, ,在此情况下,P、N的速度在同一时刻不可能相同。

当B的方向垂直纸面朝里时,P、N的速度相同,同样由图,有:

同上得:

比较得, ,在此情况下,P、N的速度在同一时刻也不可能相同。

(3)当B的方向垂直纸面朝外时,设在t时刻P、N的速度相同,

再联立④⑦⑨⑩解得:

当B的方向垂直纸面朝里时,设在t时刻P、N的速度相同

同理得:

考虑圆周运动的周期性,有:

(给定的B、q、r、m、等物理量决定n的取值)

(09年海南物理)16.(10分)如图,ABCD是边长为的正方形。质量为、电荷量为的电子以大小为的初速度沿纸面垂直于BC变射入正方形区域。在正方形内适当区域中有匀强磁场。电子从BC边上的任意点入射,都只能从A点射出磁场。不计重力,求:

(1)次匀强磁场区域中磁感应强度的方向和大小;

(2)此匀强磁场区域的最小面积。

解析:(1)设匀强磁场的磁感应强度的大小为B。令圆弧是自C点垂直于BC入射的电子在磁场中的运行轨道。电子所受到的磁场的作用力

应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外。圆弧的圆心在CB边或其延长线上。依题意,圆心在A、C连线的中垂线上,故B 点即为圆心,圆半径为按照牛顿定律有

  联立①②式得

(2)由(1)中决定的磁感应强度的方向和大小,可知自点垂直于入射电子在A点沿DA方向射出,且自BC边上其它点垂直于入射的电子的运动轨道只能在BAEC区域中。因而,圆弧是所求的最小磁场区域的一个边界。

为了决定该磁场区域的另一边界,我们来考察射中A点的电子的速度方向与BA的延长线交角为(不妨设)的情形。该电子的运动轨迹如图所示。

图中,圆的圆心为O,pq垂直于BC边 ,由③式知,圆弧的半径仍为,在D为原点、DC为x轴,AD为轴的坐标系中,P点的坐标

这意味着,在范围内,p点形成以D为圆心、为半径的四分之一圆周,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界。

因此,所求的最小匀强磁场区域时分别以为圆心、为半径的两个四分之一圆周所围成的,其面积为

评分参考:本题10分。第(1)问4分,①至③式各1分;得出正确的磁场方向的,再给1分。第(2)问6分,得出“圆弧是所求磁场区域的一个边界”的,给2分;得出所求磁场区域的另一个边界的,再给2分;⑥式2分。

试题详情

15.(09年江苏物理)(16分)如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m,置于导轨上。导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。重力加速度为g。求:

(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q;

(2)线框第一次穿越磁场区域所需的时间t1

(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离m

         

解析:

(1)设装置由静止释放到导体棒运动到磁场下边界的过程中,作用在线框上的安培力做功为W

由动能定理 

解得 

(2)设线框刚离开磁场下边界时的速度为,则接着向下运动

由动能定理 

装置在磁场中运动时收到的合力

感应电动势  =Bd

感应电流   =

安培力   

由牛顿第二定律,在t到t+时间内,有

解得 

(3)经过足够长时间后,线框在磁场下边界与最大距离之间往复运动

   由动能定理 

   解得  

试题详情

14.(09年江苏卷)(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。

               

(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;

(2)求粒子从静止开始加速到出口处所需的时间t;

(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E

解析:

(1)设粒子第1次经过狭缝后的半径为r1,速度为v1

qu=mv12

qv1B=m

解得 

同理,粒子第2次经过狭缝后的半径 

(2)设粒子到出口处被加速了n圈

解得 

(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即

当磁场感应强度为Bm时,加速电场的频率应为

粒子的动能

时,粒子的最大动能由Bm决定

解得

时,粒子的最大动能由fm决定

解得

试题详情

25.(09年浙江卷)(22分)如图所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加速度大小为g。

(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求点场强度和磁感应强度的大小和方向。

(2)请指出这束带电微粒与x轴相交的区域,并说明理由。

(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。

答案:(1);方向垂直于纸面向外;(2)见解析;(3)与x同相交的区域范围是x>0。

解析:本题考查带电粒子在复合场中的运动。

带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡。设电场强度大小为E,由

           

可得         

方向沿y轴正方向。

带电微粒进入磁场后,将做圆周运动。 且

            r=R

如图(a)所示,设磁感应强度大小为B。由

           

得           

方向垂直于纸面向外

(2)这束带电微粒都通过坐标原点。

方法一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点为。

方法二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动。如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(-Rsinθ,Rcosθ),圆周运动轨迹方程为

         x=0          x=-Rsinθ

         y=0      或     y=R(1+cosθ)

(3)这束带电微粒与x轴相交的区域是x>0

带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y同的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示。靠近M点发射出来的带电微粒在突出磁场后会射向x同正方向的无穷远处国靠近N点发射出来的带电微粒会在靠近原点之处穿出磁场。

所以,这束带电微粒与x同相交的区域范围是x>0.

试题详情


同步练习册答案