1.通过多教材上四个例子的研究,进一步体会函数是描述变量之间的依赖关系的重要数学模型。
2.1.1函数(一)
教学目标:(1)通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型
(2)学习用集合语言刻画函数
(3)了解构成函数的要素,会求一些简单函数的定义域、值域和解析式
教学重点:函数的概念.
教学过程:
2、容斥原理是计算集合中元素个数的重要方法
课后作业:(略)
3.已知关于x的方程3x2+px-7=0的解集为A,方程3x2-7x+q=0的解集为B,若A∩B={- },求A∪B.
[解] ∵A∩B={- },∴- ∈A且- ∈B.
∴3(- )2+p(- )-7=0且3(- )2-7(- )+q=0
∴p=-20,q=-
由3x2-20x-7=0得:A={- ,7}
由3x2-7x- =0得:B={- , }
∴A∪B={- , ,7}
注: A∩B中的元素都是A、B中的元素是解决本题的突破口,A∪B中只能出现一次A与B的公共元素,这是在求集合并集时需注意的.
课堂练习:第18页练习A、B
小结:1、本节课我们学习了并集的概念、和基本性质
2.设A={x|-1<x<2},B={x|1<x<3},求A∪B.
解:A∪B={x|-1<x<2}∪{x|1<x<3}={x|-1<x<3}.
1.设A={x|x是锐角三角形},B={x|x是钝角三角形},求A∪B.
解:A∪B={x|x是锐角三角形}∪{x|x是钝角三角形}={x|x是斜三角形}.
2、 (容斥原理)
1、 设集合A={1,2,3,4},B={3,4,5,6}讨论A∪B,A,B,A∩B中元素的个数有何关系.
A∪B= B∪A; A∪A=A; A∪Ф=A; A∩B=B A B
注:是否给出证明应根据学生的基础而定.
一般地,对于给定的两个集合A,B把它们所有的元素并在一起所组成的集合,叫做A,B的并集.记作A∪B(读作"A并B"),
即A∪B={x|x∈A,或x∈B}.
如:{1,2,3,6}∪{1,2,5,10}={1,2,3,5,6,10}.
又如:A={a,b,c,d,e},B={c,d,e,f}.则A∪B={a,b,c,d,e,f}
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com