020]解:(1)①CF⊥BD,CF=BD
②成立,理由如下:∵∠FAD=∠BAC=90° ∴∠BAD=∠CAF
又 BA=CA ,AD=AF ∴△BAD≌△CAF∴CF=BD ∠ACF=∠ACB=45°
∴∠BCF=90° ∴CF⊥BD ……(1分)
(2)当∠ACB=45°时可得CF⊥BC,理由如下:
如图:过点A作AC的垂线与CB所在直线交于G
则∵∠ACB=45° ∴AG=AC ∠AGC=∠ACG=45°
∵AG=AC AD=AF ………(1分)
∴△GAD≌△CAF(SAS) ∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90° ∴CF⊥BC …………(2分)
(3)如图:作AQBC于Q
∵∠ACB=45° AC=4 ∴CQ=AQ=4
∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°
∴△ADQ∽△DPC …(1分)
∴=
设CD为x(0<x<3)则DQ=CQ-CD=4-x则= …………(1分)
∴PC=(-x2+4x)=-(x-2)2+1≥1
当x=2时,PC最长,此时PC=1 ………(1分)
019](1)EO>EC,理由如下:
由折叠知,EO=EF,在Rt△EFC中,EF为斜边,∴EF>EC, 故EO>EC …2分
(2)m为定值
∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO―EC)=CO·(EO―EC)
S四边形CMNO=CM·CO=|CE―EO|·CO=(EO―EC) ·CO
∴ ……………………………………………………4分
(3)∵CO=1, ∴EF=EO=
∴cos∠FEC= ∴∠FEC=60°,
∴
∴△EFQ为等边三角形, …………………………………………5分
作QI⊥EO于I,EI=,IQ=
∴IO= ∴Q点坐标为 ……………………………………6分
∵抛物线y=mx2+bx+c过点C(0,1), Q ,m=1
∴可求得,c=1
∴抛物线解析式为 ……………………………………7分
(4)由(3),
当时,<AB
∴P点坐标为 …………………8分
∴BP=AO
方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下:
①时,∴K点坐标为或
②时, ∴K点坐标为或…………10分
故直线KP与y轴交点T的坐标为
…………………………………………12分
方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°,过P作PR⊥y轴于R,则∠RTP=60°或30°
①当∠RTP=30°时,
②当∠RTP=60°时,
∴ ……………………………12分
018]解:(1)抛物线经过,两点,
解得
抛物线的解析式为.
(2)点在抛物线上,,
即,或.
点在第一象限,点的坐标为.
由(1)知.
设点关于直线的对称点为点.
,,且,
,
点在轴上,且.
,.
即点关于直线对称的点的坐标为(0,1).
(3)方法一:作于,于.
由(1)有:,
.
,且.
,
.
,,,
.
设,则,,
.
点在抛物线上,
,
(舍去)或,.
方法二:过点作的垂线交直线于点,过点作轴于.过点作于.
.
,
又,.
,,.
由(2)知,.
,直线的解析式为.
解方程组得
点的坐标为.
017]解:(1)已知抛物线经过,
解得
所求抛物线的解析式为.··································································· 2分
(2),,
可得旋转后点的坐标为······················································································ 3分
当时,由得,
可知抛物线过点
将原抛物线沿轴向下平移1个单位后过点.
平移后的抛物线解析式为:.···························································· 5分
(3)点在上,可设点坐标为
将配方得,其对称轴为.······························ 6分
①当时,如图①,
此时
点的坐标为.····························································································· 8分
②当时,如图②
同理可得
此时
点的坐标为.
综上,点的坐标为或.········································································· 10分
016]解:(1)设正比例函数的解析式为,
因为的图象过点,所以,解得.
这个正比例函数的解析式为.······································································· (1分)
设反比例函数的解析式为.因为的图象过点,所以
,解得.这个反比例函数的解析式为.··································· (2分)
(2)因为点在的图象上,所以,则点.········ (3分)
设一次函数解析式为.因为的图象是由平移得到的,
所以,即.又因为的图象过点,所以
,解得,一次函数的解析式为.······························ (4分)
(3)因为的图象交轴于点,所以的坐标为.
设二次函数的解析式为.
因为的图象过点、、和,
所以··················· (5分) 解得
这个二次函数的解析式为.····················································· (6分)
(4)交轴于点,点的坐标是,
如图所示,
.
假设存在点,使.
四边形的顶点只能在轴上方,,
.
,.在二次函数的图象上,
.解得或.
当时,点与点重合,这时不是四边形,故舍去,
点的坐标为. (8分)
015]⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C的横坐标为4,且过点(0,)
∴y=a(x-4)2+k ………………①
又∵对称轴为直线x=4,图象在x轴上截得的线段长为6 ∴A(1,0),B(7,0)
∴0=9a+k ………………②由①②解得a=,k=∴二次函数的解析式为:y=(x-4)2-
⑵∵点A、B关于直线x=4对称 ∴PA=PB ∴PA+PD=PB+PD≥DB ∴当点P在线段DB上时PA+PD取得最小值 ∴DB与对称轴的交点即为所求点P
设直线x=4与x轴交于点M ∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO
∴△BPM∽△BDO∴ ∴∴点P的坐标为(4,)
⑶由⑴知点C(4,),又∵AM=3,∴在Rt△AMC中,cot∠ACM=,
∴∠ACM=60o,∵AC=BC,∴∠ACB=120o
①当点Q在x轴上方时,过Q作QN⊥x轴于N 如果AB=BQ,由△ABC∽△ABQ有
BQ=6,∠ABQ=120o,则∠QBN=60o ∴QN=3,BN=3,ON=10,此时点Q(10,),
如果AB=AQ,由对称性知Q(-2,)
②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,),
经检验,点(10,)与(-2,)都在抛物线上
综上所述,存在这样的点Q,使△QAB∽△ABC
点Q的坐标为(10,)或(-2,)或(4,).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com