0  258960  258968  258974  258978  258984  258986  258990  258996  258998  259004  259010  259014  259016  259020  259026  259028  259034  259038  259040  259044  259046  259050  259052  259054  259055  259056  259058  259059  259060  259062  259064  259068  259070  259074  259076  259080  259086  259088  259094  259098  259100  259104  259110  259116  259118  259124  259128  259130  259136  259140  259146  259154  447090 

3、典型例题

[例题5]如图1所示,一个质量为m,电量为-q的小物体,可在水平轨道x上运动,O端有一与轨道垂直的固定墙,轨道处在场强大小为E,方向沿Ox轴正向的匀强磁场中,小物体以初速度v0从点x0沿Ox轨道运动,运动中受到大小不变的摩擦力f作用,且f<qE ,小物体与墙壁碰撞时不损失机械能,求它在停止前所通过的总路程?

[点拨解疑] 首先要认真分析小物体的运动过程,建立物理图景。开始时,设物体从x0点,以速度v0向右运动,它在水平方向受电场力qE和摩擦力f,方向均向左,因此物体向右做匀减速直线运动,直到速度为零;而后,物体受向左的电场力和向右的摩擦力作用,因为qE>f,所以物体向左做初速度为零的匀加速直线运动,直到以一定速度与墙壁碰撞,碰后物体的速度与碰前速度大小相等,方向相反,然后物体将多次的往复运动。

但由于摩擦力总是做负功,物体机械能不断损失,所以物体通过同一位置时的速度将不断减小,直到最后停止运动。物体停止时,所受合外力必定为零,因此物体只能停在O点。

对于这样幅度不断减小的往复运动,研究其全过程。电场力的功只跟始末位置有关,而跟路径无关,所以整个过程中电场力做功  

根据动能定理  , 得:

  

点评:该题也可用能量守恒列式:电势能减少了,动能减少了,内能增加了,   ∴

同样解得

[例题6]  如图2所示,半径为r的绝缘细圆环的环面固定在水平面上,场强为E的匀强电场与环面平行。一电量为+q、质量为m的小球穿在环上,可沿环作无摩擦的圆周运动,若小球经A点时,速度vA的方向恰与电场垂直,且圆环与小球间沿水平方向无力的作用,试计算:

(1)速度vA的大小;

(2)小球运动到与A点对称的B点时,对环在水平方向的作用力。

[点拨解疑] (1)在A点,小球在水平方向只受电场力作用,根据牛顿第二定律得:  

所以小球在A点的速度

(2)在小球从AB的过程中,根据动能定理,电场力做的正功等于小球动能的增加量,即 

小球在B点时,根据牛顿第二定律,在水平方向有

解以上两式,小球在B点对环的水平作用力为:

点评:分析该题,也可将水平的匀强电场等效成一新的重力场,重力为EqA是环上的最高点,B是最低点;这样可以把该题看成是熟悉的小球在竖直平面内作圆周运动的问题。

[例题7](理综全国卷)如图3所示有三根长度皆为l=1.00 m的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的 O点,另一端分别挂有质量皆为m=1.00×kg的带电小球AB,它们的电量分别为一q和+qq=1.00×C.AB之间用第三根线连接起来.空间中存在大小为E=1.00×106N/C的匀强电场,场强方向沿水平向右,平衡时 AB球的位置如图所示.现将OB之间的线烧断,由于有空气阻力,AB球最后会达到新的平衡位置.求最后两球的机械能与电势能的总和与烧断前相比改变了多少.(不计两带电小球间相互作用的静电力)

[点拨解疑]图(1)中虚线表示AB球原来的平衡位置,实线表示烧断后重新达到平衡的位置,其中分别表示OAAB与竖直方向的夹角。A球受力如图(2)所示:重力mg,竖直向下;电场力qE,水平向左;细线OA对A的拉力T1,方向如图;细线ABA的拉力T2,方向如图。由平衡条件得

①  

 

B球受力如图(3)所示:重力mg,竖直向下;电场力qE,水平向右;细线ABB

的拉力T2,方向如图。由平衡条件得

③  

联立以上各式并代入数据,得   ⑤  

由此可知,AB球重新达到平衡的位置如图(4)所示。

与原来位置相比,A球的重力势能减少了  ⑦   

B球的重力势能减少了    ⑧ 

A球的电势能增加了  WA=qElcos60°⑨ 

B球的电势能减少了   ⑩

两种势能总和减少了    

代入数据解得      

[例题8](全国理综卷)如图5所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?

[点拨解疑]设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为v1v2,经过很短的时间△t,杆甲移动距离v1t,杆乙移动距离v2t,回路面积改变

由法拉第电磁感应定律,回路中的感应电动势

回路中的电流

杆甲的运动方程

由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0)等于外力F的冲量

联立以上各式解得 

代入数据得

针对训练

试题详情

2、方法技巧:

如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E=E;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔEE;③各种形式的能量的增量(ΔE=E-E)的代数和为零,即ΔE1E2+…ΔEn=0。

电磁感应现象中,其他能向电能转化是通过安培力的功来量度的,感应电流在磁场中受到的安培力作了多少功就有多少电能产生,而这些电能又通过电流做功转变成其他能,如电阻上产生的内能、电动机产生的机械能等。从能量的角度看,楞次定律就是能量转化和守恒定律在电磁感应现象中的具体表现。电磁感应过程往往涉及多种能量形势的转化,因此从功和能的观点入手,分析清楚能量转化的关系,往往是解决电磁感应问题的重要途径;在运用功能关系解决问题时,应注意能量转化的来龙去脉,顺着受力分析、做功分析、能量分析的思路严格进行,并注意功和能的对应关系。

试题详情

1、知识网络

能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表:

试题详情

3、典型例题

[例题1]如图1所示,图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B的匀强磁场,方向垂直纸面向外。OMN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中给定的P点相遇,PO的距离为L,不计重力及粒子间的相互作用。

(1)求所考察的粒子在磁场中的轨道半径;

(2)求这两个粒子从O点射入磁场的时间间隔。

   

[点拨解疑](1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律得

,则

(2)如图2所示,以OP为弦可以画两个半径相同的圆,分别表示在P点相遇的两个粒子的轨迹。圆心分别为O1、O2,过O点的直径分别为OO1Q1OO2Q2,在O点处两个圆的切线分别表示两个粒子的射入方向,用θ表示它们之间的夹角。由几何关系可知,,从O点射入到相遇,粒子1的路程为半个圆周加弧长Q1P=Rθ,粒子2的路程为半个圆周减弧长PQ2=Rθ

粒子1的运动时间为 ,其中T为圆周运动的周期。

粒子2运动的时间为

两粒子射入的时间间隔为 

因为    所以

有上述算式可解得 

点评:解带电粒子在磁场中运动的题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”)之外,更应侧重于运用数学知识进行分析。本题在众多的物理量和数学量中,角度是最关键的量,它既是建立几何量与物理量之间关系式的一个纽带,又是沟通几何图形与物理模型的桥梁。

[例题2]如图3所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿Y轴负方向的匀强电场,第四象限内无电场和磁场。质量为m、带电量为q的粒子从M点以速度v0沿x轴负方向进入电场,不计粒子的重力,粒子经NP最后又回到M点。设OM=LON=2L,则:

关于电场强度E的大小,下列结论正确的是   (  )

A.     B.      C.       D.

(2)匀强磁场的方向是         。

(3)磁感应强度B的大小是多少?

   

[点拨解疑] (1)由带电粒子在电场中做类平抛运动,易知,且E=  故选C

(2)由左手定则,匀强磁场的方向为垂直纸面向里。

(3)根据粒子在电场中运动的情况可知,粒子带负电。粒子在电场中做类平抛运动,设到达N点的速度为v,运动方向与x轴负方向的夹角为θ,如图4所示。

由动能定理得

将(1)式中的E代入可得   所以θ=45°

粒子在磁场中做匀速圆周运动,经过P点时速度方向也与x轴负方向成45°角。

OP=OM=L    NP=NO+OP=3L

粒子在磁场中的轨道半径为R=Npcos45°=   又

解得 

点评:带电粒子的复杂运动常常是由一些基本运动组合而成的。掌握基本运动的特点是解决这类问题的关键所在。该题中,粒子在匀强磁场中运动轨迹的圆心不在y轴上,注意到这一点是很关键的。

[例题3]  如图5所示,在水平正交的匀强电场和匀强磁场中,半径为R的光滑绝缘竖直圆环上,套有一个带正电的小球,已知小球所受电场力与重力相等,小球在环顶端A点由静止释放,当小球运动的圆弧为周长的几分之几时,所受磁场力最大?

[点拨解疑]  小球下滑的过程中,要使磁场力最大,则需要速度最大。OC为与小球受到的重力、电场力的合力平行的半径。由功能关系寻找速度最大的点,因为洛伦兹力不做功,所以不考虑磁场的作用,从图中AC,上述合力有切向分力,且与速度同向,因此做正功,小球动能增加;在C点时,该合力为径向,没有切向分力;此后切向分力与线速度反向,动能将减小;故在C点时速度最大,所受磁场力也最大。由受力分析知

mg=qE  mg=qEtanα  得α= 45°

由图知θ=α+90°=135°

故小球运动的弧长与周长之比为

所以运动的弧长为周长的

点评:讨论带电粒子的运动,必须熟悉各种力做功的特点。该题也可用等效法处理。把电场和重力场合起来当作一个新的重力场,这个重力场的竖直方向与原水平方向成45°角斜向下,这样就很容易确定速度最大的点。

[例题4 ] 从阴极K发射的电子经电势差U0=5000V的阳极加速后,沿平行于板面的方向从中央射入两块长L1=10cm、间距d=4cm的平行金属板AB之间,在离金属板边缘L2=75cm处放置一个直径D=20cm、带有纪录纸的圆筒。整个装置放在真空内,电子发射时的初速度不计,如图6所示,若在金属板上加一U =1000cos2πt V的交流电压,并使圆筒绕中心轴按图示方向以n=2r/s匀速转动,分析电子在纪录纸上的轨迹形状并画出从t=0开始的1s内所纪录到的图形。

[点拨解疑] 对电子的加速过程,由动能定理得:

eU0=mv02

得电子加速后的速度   v0==4.2×107m/s

电子进入偏转电场后,由于在其中运动的时间极短,可以忽略运动期间偏转电压的变化,认为电场是稳定的,因此电子做类平抛的运动。如图7所示。

交流电压在AB两板间产生的电场强度    V/m

电子飞离金属板时的偏转距离 

电子飞离金属板时的竖直速度 

电子从飞离金属板到到达圆筒时的偏转距离 

所以在纸筒上的落点对入射方向的总偏转距离为

m

可见,在纪录纸上的点在竖直方向上以振幅0.20m、周期T=1s做简谐运动。因为圆筒每秒转2周,故转一周在纸上留下的是前半个余弦图形,接着的一周中,留下后半个图形,合起来,1s内,在纸上的图形如图8所示。

点评:偏转电场如果不稳定,电子在其中的运动将非常复杂,因此理想化处理是解答本题的关键。示波器是常用的电子仪器,其原理与该题的情景有相似之处。

试题详情

2、方法点拨:

分析带电粒子在电场、磁场中运动,主要是两条线索:

(1)力和运动的关系。根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。

(2)功能关系。根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。因此要熟悉各种力做功的特点。

处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。

处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。

试题详情

1、知识网络

试题详情

22、(14分)通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式: f(x)= (1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟? (2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些? (3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?

试题详情

21.(本题满分12分)

设动点与两定点的距离之比为

⑴ 求动点的轨迹的方程,并说明轨迹是什么;

⑵ 若轨迹与直线只有一个公共点,求的值。

试题详情

20.(12分)过点P(1,4)作直线l与x轴、y轴正半轴分别交于A、B两点,O为坐标原点,求△AOB面积的最小值及此时直线l的方程.   

试题详情

19.(12分)已知直线l:(2m+1)x+(m+1)y=7m+5,圆C:x2+y2-6x-8y+21=0.

⑴求证:直线l与圆C总相交;

⑵求相交弦的长的最小值及此时m的值.   

试题详情


同步练习册答案