47.(2009山东卷理)已知定义在R上的奇函数,满足,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间上有四个不同的根,则
答案 -8
解析 因为定义在R上的奇函数,满足,所以,所以, 由为奇函数,所以函数图象关于直线对称且,由知,所以函数是以8为周期的周期函数,又因为在区间[0,2]上是增函数,所以在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间上有四个不同的根,不妨设由对称性知所以
[命题立意]:本题综合考查了函数的奇偶性,单调性,
对称性,周期性,以及由函数图象解答方程问题,
运用数形结合的思想和函数与方程的思想解答问题.
46.(2009江苏卷)已知,函数,若实数、满足,则、的大小关系为 .
解析 考查指数函数的单调性。
,函数在R上递减。由得:m<n
45.(2009北京理)若函数 则不等式的解集为____________.
答案
解析 本题主要考查分段函数和简单绝对值不等式的解法. 属于基础知识、基本运算
的考查.
(1)由.
(2)由.
∴不等式的解集为,∴应填.
41.(2009重庆卷理)若是奇函数,则 .
答案
解析 解法1
42(2009上海卷文) 函数f(x)=x3+1的反函数f-1(x)=_____________.
答案
解析 由y=x3+1,得x=,将y改成x,x改成y可得答案。
44(2009北京文)已知函数若,则 .
.w.w.k.s.5 答案
.w 解析 5.u.c本题主要考查分段函数和简单的已知函数值求的值. 属于基础知识、基本运算的考查.
由,无解,故应填.
40.(2009重庆卷文)把函数的图像向右平移个单位长度,再向下平移个单位长度后得到图像.若对任意的,曲线与至多只有一个交点,则 的最小值为 ( )
A. B. C. D.
答案 B
解析 根据题意曲线C的解析式为则方程
,即,即对任意
恒成立,于是的最大值,令则
由此知函数在(0,2)上为增函数,在上为减函数,所以当时,函数取最大值,即为4,于是。
39.(2009福建卷文)定义在R上的偶函数的部分图像如右图所示,则在上,下列函数中与的单调性不同的是 ( )
A.
B.
C.
D.
答案 C
解析 解析 根据偶函数在关于原点对称的区间上单调性相反,故可知求在上单调递减,注意到要与的单调性不同,故所求的函数在上应单调递增。而函数在上递减;函数在时单调递减;函数在(上单调递减,理由如下y’=3x2>0(x<0),故函数单调递增, 显然符合题意;而函数,有y’=-<0(x<0),故其在(上单调递减, 不符合题意,综上选C。
38.(2009福建卷文)下列函数中,与函数 有相同定义域的是 ( )
A . B. C. D.
答案 A
解析 解析 由可得定义域是的定义域;的定义域是≠0;的定义域是定义域是。故选A.
37.(2009四川卷理)已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值是 ( )
A.0 B. C.1 D.
[考点定位]本小题考查求抽象函数的函数值之赋值法,综合题。(同文12)
答案 A
解析 令,则;令,则
由得,所以
,故选择A。
36.(2009天津卷理)已知函数若则实数
的取值范围是 ( )
A B C D
[考点定位]本小题考查分段函数的单调性问题的运用。以及一元二次不等式的求解。
解析:由题知在上是增函数,由题得,解得,故选择C。
35.(2009湖南卷理)设函数在(,+)内有定义。对于给定的正数K,定义函数 ( )
取函数=。若对任意的,恒有=,则 ( )
A.K的最大值为2 B. K的最小值为2
C.K的最大值为1 D. K的最小值为1
答案 D
解析 由知,所以时,,当时,,所以即的值域是,而要使在上恒成立,结合条件分别取不同的值,可得D符合,此时。故选D项。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com