2. (陕西省西安铁一中2009届高三12月月考)如图,边长为2的等
边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,
M为BC的中点
(Ⅰ)证明:AM⊥PM ;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求点D到平面AMP的距离。
(Ⅰ) 证明 以D点为原点,分别以直线DA、DC为x轴、y轴,
建立如图所示的空间直角坐标系,
依题意,可得
∴
∴
即,∴AM⊥PM .
(Ⅱ)解 设,且平面PAM,则
即
∴ ,
取,得
取,显然平面ABCD, ∴
结合图形可知,二面角P-AM-D为45°;
(Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则
=
即点D到平面PAM的距离为
2009年联考题
解答题
1.(湖南省衡阳市八中2009届高三第三次月考试题)如图,P-ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角的余弦值;
(3)求到平面PAD的距离
以为轴,为轴,为轴建立空间直角坐标系
(1)证明 设E是BD的中点,P-ABCD是正四棱锥,∴
又, ∴ ∴∴
∴ , 即。
(2)解 设平面PAD的法向量是,
∴ 取得,又平面的法向量是∴ , ∴。
(3)解 ∴到平面PAD的距离。
7.(2005江西)如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
以D为坐标原点,直线DA,DC,DD1分别为x, y, z轴,建 立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),
E(1,x,0),A(1,0,0),C(0,2,0)
(1)证明
(2)解 因为E为AB的中点,则E(1,1,0),
从而,
,
设平面ACD1的法向量为,
则
也即,得,从而,所以点E到平面AD1C的距离为
(3)解 设平面D1EC的法向量,
∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴(不合,舍去), .
∴AE=时,二面角D1-EC-D的大小为.
6.(2006广东卷)如图所示,AF、DE分别是⊙O、⊙O1的直
径.AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,
AB=AC=6,OE//AD.
(Ⅰ)求二面角B-AD-F的大小;
(Ⅱ)求直线BD与EF所成的角.
解 (Ⅰ)∵AD与两圆所在的平面均垂直,
∴AD⊥AB, AD⊥AF,故∠BAD是二面角B-AD-F的平面角,
依题意可知,ABCD是正方形,所以∠BAD=450.
即二面角B-AD-F的大小为450.
(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,,0),B(,0,0),D(0,,8),E(0,0,8),F(0,,0)
所以,
.
设异面直线BD与EF所成角为,
则
直线BD与EF所成的角为
5. (2007福建理•18)如图,正三棱柱ABC-A1B1C1的所有
棱长都为2,D为CC1中点。
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)求二面角A-A1D-B的大小;
(Ⅲ)求点C到平面A1BD的距离;
(Ⅰ)证明 取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
,,
,.
平面.
(Ⅱ)解 设平面的法向量为.
,.
,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
(Ⅲ)解 由(Ⅱ),为平面法向量,
.
点到平面的距离.
4. (2008福建18)如图,在四棱锥P-ABCD中,则面PAD⊥底面 ABCD,侧棱PA=PD=,底面ABCD为直角梯形,
其中BC∥ AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出 的值;若不存在,请说明理由.
(Ⅰ)证明 在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)解 以O为坐标原点,的方向分别为x轴、y轴、
z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以异面直线PB与CD所成的角是arccos,
(Ⅲ)解 假设存在点Q,使得它到平面PCD的距离为,
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
则所以即,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设由,得
解y=-或y=(舍去),
此时,所以存在点Q满足题意,此时.
3. (2008湖南17 )如图所示,四棱锥P-ABCD的底面
ABCD是边长为1的菱形,∠BCD=60°,E是CD
的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
如图所示,以A为原点,建立空间直角坐标系.则相关各点的
坐标分别是A(0,0,0),B(1,0,0),
P(0,0,2),
(Ⅰ)证明 因为,
平面PAB的一个法向量是,
所以共线.从而BE⊥平面PAB.
又因为平面PBE,
故平面PBE⊥平面PAB.
(Ⅱ)解 易知
设是平面PBE的一个法向量,则由得
所以
设是平面PAD的一个法向量,则由得所以故可取
于是,
故平面PAD和平面PBE所成二面角(锐角)的大小是
2. (2008安徽)如图,在四棱锥中,底面四边长
为1的菱形,, , ,为
的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
作于点P,如图,分别以AB,AP,AO所在直线为
轴建立坐标系
,
(1)证明
设平面OCD的法向量为,则
即
取,解得
(2)解 设与所成的角为,
, 与所成角的大小为.
(3)解 设点B到平面OCD的距离为,
则为在向量上的投影的绝对值,
由 , 得.所以点B到平面OCD的距离为
2009年高考题
2005-2008年高考题
解答题
1. (2008全国Ⅱ19)(本小题满分12分)
如图,正四棱柱中,,点在上且.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的大小.
以为坐标原点,射线为轴的正半轴,
建立如图所示直角坐标系.依题设,.
,
.
(Ⅰ)证明 因为,,
故,.
又,
所以平面.
(Ⅱ)解 设向量是平面的法向量,则
,.
故,.
令,则,,.
等于二面角的平面角,
.
所以二面角的大小为.
14.(本题满分14分)
如图,在直三棱柱中,,
,求二面角的大小。
简答:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com