32.(2009湖南卷文)对于数列,若存在常数M>0,对任意的,恒有
, 则称数列为数列.
(Ⅰ)首项为1,公比为的等比数列是否为B-数列?请说明理由;
(Ⅱ)设是数列的前n项和.给出下列两组判断:
A组:①数列是B-数列, ②数列不是B-数列;
B组:③数列是B-数列, ④数列不是B-数列.
请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题.
判断所给命题的真假,并证明你的结论;
(Ⅲ)若数列是B-数列,证明:数列也是B-数列。
解: (Ⅰ)设满足题设的等比数列为,则.于是
==
所以首项为1,公比为的等比数列是B-数列 .
(Ⅱ)命题1:若数列是B-数列,则数列是B-数列.此命题为假命题.
事实上设=1,,易知数列是B-数列,但=n,
.
由n的任意性知,数列不是B-数列。
命题2:若数列是B-数列,则数列不是B-数列。此命题为真命题。
事实上,因为数列是B-数列,所以存在正数M,对任意的,有
,
即.于是
,
所以数列是B-数列。
(注:按题中要求组成其它命题解答时,仿上述解法)
(Ⅲ)若数列是B-数列,则存在正数M,对任意的有
.
因为
.
记,则有
.
因此.
故数列是B-数列.
31.(2009四川卷文)设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列与数列的通项公式;
(II)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由;
(III)记,设数列的前项和为,求证:对任意正整数都有;
解(I)当时,
又
∴数列是首项为,公比为的等比数列,
∴, …………………………………3分
(II)不存在正整数,使得成立。
证明:由(I)知
∴当n为偶数时,设
∴
当n为奇数时,设
∴
∴对于一切的正整数n,都有
∴不存在正整数,使得成立。 …………………………………8分
(III)由得
又,
当时,,
当时,
30. (2009湖北卷理)已知数列的前n项和(n为正整数)。
(Ⅰ)令,求证数列是等差数列,并求数列的通项公式;
(Ⅱ)令,试比较与的大小,并予以证明。
解(I)在中,令n=1,可得,即
当时,,
.
.
又数列是首项和公差均为1的等差数列.
于是.
(II)由(I)得,所以
由①-②得
于是确定的大小关系等价于比较的大小
由
可猜想当证明如下:
证法1:(1)当n=3时,由上验算显示成立。
(2)假设时
所以当时猜想也成立
综合(1)(2)可知 ,对一切的正整数,都有
证法2:当时
综上所述,当,当时
29.(2009江西卷理)各项均为正数的数列,,且对满足的正整数都有
(1)当时,求通项
(2)证明:对任意,存在与有关的常数,使得对于每个正整数,都有
解:(1)由得
将代入化简得
所以
故数列为等比数列,从而
即
可验证,满足题设条件.
(2) 由题设的值仅与有关,记为则
考察函数 ,则在定义域上有
故对, 恒成立.
又 ,
注意到,解上式得
取,即有 .
27.(2009广东卷理)知曲线.从点向曲线引斜率为的切线,切点为.
(1)求数列的通项公式;
(2)证明:.
解:(1)设直线:,联立得,则,∴(舍去)
,即,∴
(2)证明:∵
∴
由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,
则有,即.
28(2009安徽卷理)首项为正数的数列满足
(I)证明:若为奇数,则对一切都是奇数;
(II)若对一切都有,求的取值范围.
解:本小题主要考查数列、数学归纳法和不等式的有关知识,考查推理论证、抽象概括、运算求解和探究能力,考查学生是否具有审慎思维的习惯和一定的数学视野。本小题满分13分。
解:(I)已知是奇数,假设是奇数,其中为正整数,
则由递推关系得是奇数。
根据数学归纳法,对任何,都是奇数。
(II)(方法一)由知,当且仅当或。
另一方面,若则;若,则
根据数学归纳法,
综合所述,对一切都有的充要条件是或。
(方法二)由得于是或。
因为所以所有的均大于0,因此与同号。
根据数学归纳法,,与同号。
因此,对一切都有的充要条件是或。
26.(2009山东卷理)等比数列{}的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上.
(1)求r的值;
(11)当b=2时,记
证明:对任意的 ,不等式成立
解:因为对任意的,点,均在函数且均为常数的图像上.所以得,当时,,当时,,又因为{}为等比数列,所以,公比为,
(2)当b=2时,,
则,所以
下面用数学归纳法证明不等式成立.
① 当时,左边=,右边=,因为,所以不等式成立.
② 假设当时不等式成立,即成立.则当时,左边=
所以当时,不等式也成立.
由①、②可得不等式恒成立.
[命题立意]:本题主要考查了等比数列的定义,通项公式,以及已知求的基本题型,并运用数学归纳法证明与自然数有关的命题,以及放缩法证明不等式.
24.(2009江苏卷)设是公差不为零的等差数列,为其前项和,满足。
(1)求数列的通项公式及前项和;
(2)试求所有的正整数,使得为数列中的项。
[解析] 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力。满分14分。
(1)设公差为,则,由性质得,因为,所以,即,又由得,解得,,
(2) (方法一)=,设,
则=, 所以为8的约数
(方法二)因为为数列中的项,
故为整数,又由(1)知:为奇数,所以
经检验,符合题意的正整数只有。
25(2009江苏卷)对于正整数≥2,用表示关于的一元二次方程有实数根的有序数组的组数,其中(和可以相等);对于随机选取的(和可以相等),记为关于的一元二次方程有实数根的概率。
(1)求和;
(2)求证:对任意正整数≥2,有.
[解析] [必做题]本小题主要考查概率的基本知识和记数原理,考查探究能力。满分10分。
23.(2009北京理)已知数集具有性质;对任意的
,与两数中至少有一个属于.
(Ⅰ)分别判断数集与是否具有性质,并说明理由;
(Ⅱ)证明:,且;
(Ⅲ)证明:当时,成等比数列.
[解析]本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分
分类讨论等数学思想方法.本题是数列与不等式的综合题,属于较难层次题.
(Ⅰ)由于与均不属于数集,∴该数集不具有性质P.
由于都属于数集,
∴该数集具有性质P.
(Ⅱ)∵具有性质P,∴与中至少有一个属于A,
由于,∴,故.
从而,∴.
∵, ∴,故.
由A具有性质P可知.
又∵,
∴,
从而,
∴.
(Ⅲ)由(Ⅱ)知,当时,有,即,
∵,∴,∴,
由A具有性质P可知.
,得,且,∴,
∴,即是首项为1,公比为成等比数列..k.s.5.
22.(2009全国卷Ⅰ理)在数列中,
(I)设,求数列的通项公式
(II)求数列的前项和
分析:(I)由已知有
利用累差迭加即可求出数列的通项公式: ()
(II)由(I)知,
=
而,又是一个典型的错位相减法模型,
易得 =
评析:09年高考理科数学全国(一)试题将数列题前置,考查构造新数列和利用错位相减法求前n项和,一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。
21.(2009年广东卷文)(本小题满分14分)
已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+().
(1)求数列和的通项公式;
(2)若数列{前项和为,问>的最小正整数是多少?
解(1),
,,
.
又数列成等比数列, ,所以 ;
又公比,所以 ;
又,, ;
数列构成一个首相为1公差为1的等差数列, ,
当, ;
();
(2)
;
由得,满足的最小正整数为112.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com