0  262966  262974  262980  262984  262990  262992  262996  263002  263004  263010  263016  263020  263022  263026  263032  263034  263040  263044  263046  263050  263052  263056  263058  263060  263061  263062  263064  263065  263066  263068  263070  263074  263076  263080  263082  263086  263092  263094  263100  263104  263106  263110  263116  263122  263124  263130  263134  263136  263142  263146  263152  263160  447090 

1. 今年“世界水日”主题“关注水质、抓住机遇、应对挑战”,下列说法与主题不符的是

A. 上海属“水质性缺水”,保护水资源刻不容缓  B. 提倡节水产业,加强废水处理

C. 只喝桶装水或功能性饮料以保证饮用水质量  D. 用再生水灌溉城市绿地

试题详情

13.(2009宁夏海南卷文)(本小题满分10分)选修4-1;几何证明选讲

如图,已知ABC中的两条角平分线相交于B=60上,且。      

(1)证明:四点共圆;

     (2)证明:CE平分DEF。

  (22)解:

(Ⅰ)在△ABC中,因为∠B=60°,      

所以∠BAC+∠BCA­=120°.

因为AD,CE是角平分线,

所以∠HAC+∠HCA=60°,      

故∠AHC=120°.

于是∠EHD=∠AHC=120°.

因为∠EBD+∠EHD=180°,

所以B,D,H,E四点共圆。

(Ⅱ)连结BH,则BH为的平分线,得30°      

由(Ⅰ)知B,D,H,E四点共圆,      

所以30°

60°,由已知可得

可得30°      

所以CE平分

(23)(2009宁夏海南卷文)(本小题满分10分)选修4-4:坐标系与参数方程。

   已知曲线C (t为参数), C(为参数)。

(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;

(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线

  (t为参数)距离的最小值。      

(23)解:

(Ⅰ)       

为圆心是,半径是1的圆。

为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆。      

(Ⅱ)当时,,故

为直线

M到的距离       

从而当时,取得最小值       

(24)(本小题满分10分)选修4-5:不等式选讲

如图,为数轴的原点,为数轴上三点,为线段上的动点,设表示与原点的距离, 表示距离4倍与距离的6倍的和.

(1)将表示为的函数;

(2)要使的值不超过70, 应该在什么范围内取值?

       

(24)解:

(Ⅰ)       

(Ⅱ)依题意,满足

解不等式组,其解集为

所以                              

试题详情

12.(本小题满分10分)选修4-5:不等式选讲

如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.

(1)将y表示成x的函数;

(2)要使y的值不超过70,x 应该在什么范围内取值?    

(24)解:

   (Ⅰ)

   (Ⅱ)依题意,x满足

    {

解不等式组,其解集为[9,23]

所以        

试题详情

11.(2009宁夏海南卷理)请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。

(2009宁夏海南卷理)本小题满分10分)选修4-1:几何证明选讲    

  如图,已知的两条角平分线相交于H,,F在上,

(I)           证明:B,D,H,E四点共圆:

(II)          证明:平分。    

(22)解:

   (Ⅰ)在△ABC中,因为∠B=60°,

所以∠BAC+∠BCA=120°.

因为AD,CE是角平分线,

所以∠HAC+∠HCA=60°,

故∠AHC=120°.     

于是∠EHD=∠AHC=120°.

因为∠EBD+∠EHD=180°,

所以B,D,H,E四点共圆.

(Ⅱ)连结BH,则BH为∠ABC的平分线,得∠HBD=30°

由(Ⅰ)知B,D,H,E四点共圆,

所以∠CED=∠HBD=30°.

又∠AHE=∠EBD=60°,由已知可得EF⊥AD,

可得∠CEF=30°.

所以CE平分∠DEF.   

(23)(本小题满分10分)选修4-4:坐标系与参数方程。

   已知曲线C (t为参数), C(为参数)。

(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;

(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线

  (t为参数)距离的最小值。     

(23)解:

(Ⅰ)

为圆心是(,半径是1的圆.

为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.

(Ⅱ)当时,

为直线

从而当时,

试题详情

10.(本小题满分10分)选修4-5:不等式选讲

设函数

(1)    若解不等式

(2)如果,,求 的取值范围。     

(24)解:

(Ⅰ)当a=-1时,f(x)=︱x-1︳+︱x+1︳.

由f(x)≥3得

︱x-1︳+︱x+1|≥3

(ⅰ)x≤-1时,不等式化为

1-x-1-x≥3 即-2x≥3

试题详情

9.(2009辽宁卷理)请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。

(2009辽宁卷理)(本小题满分10分)选修4-1:几何证明讲     

已知 ABC  中,AB=AC,  DABC外接圆劣弧上的点(不与点A,C重合),延长BD至E。

(1)    求证:AD的延长线平分CDE;

(2)    若BAC=30,ABC中BC边上的高为2+,求ABC外接圆的面积。     

(22)解:

(Ⅰ)如图,设F为AD延长线上一点

∵A,B,C,D四点共圆,

∴∠CDF=∠ABC

又AB=AC  ∴∠ABC=∠ACB,

且∠ADB=∠ACB, ∴∠ADB=∠CDF,

对顶角∠EDF=∠ADB, 故∠EDF=∠CDF,

即AD的延长线平分∠CDE.

(Ⅱ)设O为外接圆圆心,连接AO交BC于H,则AH⊥BC.

   连接OC,A由题意∠OAC=∠OCA=150, ∠ACB=750,

∴∠OCH=600.

设圆半径为r,则r+r=2+,a得r=2,外接圆的面积为4

试题详情

8.(2009福建卷理)本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,

(1)(本小题满分7分)选修4-4:矩阵与变换                  

已知矩阵M所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知直线l:3x+4y-12=0与圆C:  (为参数 )试判断他们的公共点个数

(3)(本小题满分7分)选修4-5:不等式选讲

解不等式∣2x-1∣<∣x∣+1

(2)解:圆的方程可化为.

其圆心为,半径为2.

(3)解:当x<0时,原不等式可化为

不存在;

时,原不等式可化为

综上,原不等式的解集为

试题详情

7.C. 选修4 - 4:坐标系与参数方程

已知曲线C的参数方程为(为参数,).

求曲线C的普通方程。

试题详情

6.B. 选修4 - 2:矩阵与变换

求矩阵的逆矩阵.

[解析] 本小题主要考查逆矩阵的求法,考查运算求解能力。满分10分。

解:设矩阵A的逆矩阵为

解得:

从而A的逆矩阵为.

试题详情

5.(2009江苏卷)[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

A.选修4 - 1:几何证明选讲

如图,在四边形ABCD中,△ABC≌△BAD.

求证:AB∥CD.

[解析] 本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力。满分10分。

证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CBA=∠CDB。再由△ABC≌△BAD得∠CAB=∠DBA。因此∠DBA=∠CDB,所以AB∥CD。

试题详情


同步练习册答案