1. 今年“世界水日”主题“关注水质、抓住机遇、应对挑战”,下列说法与主题不符的是
A. 上海属“水质性缺水”,保护水资源刻不容缓 B. 提倡节水产业,加强废水处理
C. 只喝桶装水或功能性饮料以保证饮用水质量 D. 用再生水灌溉城市绿地
13.(2009宁夏海南卷文)(本小题满分10分)选修4-1;几何证明选讲
如图,已知ABC中的两条角平分线和相交于,B=60,在上,且。
(1)证明:四点共圆;
(2)证明:CE平分DEF。
(22)解:
(Ⅰ)在△ABC中,因为∠B=60°,
所以∠BAC+∠BCA=120°.
因为AD,CE是角平分线,
所以∠HAC+∠HCA=60°,
故∠AHC=120°.
于是∠EHD=∠AHC=120°.
因为∠EBD+∠EHD=180°,
所以B,D,H,E四点共圆。
(Ⅱ)连结BH,则BH为的平分线,得30°
由(Ⅰ)知B,D,H,E四点共圆,
所以30°
又60°,由已知可得,
可得30°
所以CE平分
(23)(2009宁夏海南卷文)(本小题满分10分)选修4-4:坐标系与参数方程。
已知曲线C: (t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。
(23)解:
(Ⅰ)
为圆心是,半径是1的圆。
为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆。
(Ⅱ)当时,,故
为直线,
M到的距离
从而当时,取得最小值
(24)(本小题满分10分)选修4-5:不等式选讲
如图,为数轴的原点,为数轴上三点,为线段上的动点,设表示与原点的距离, 表示到距离4倍与到距离的6倍的和.
(1)将表示为的函数;
(2)要使的值不超过70, 应该在什么范围内取值?
(24)解:
(Ⅰ)
(Ⅱ)依题意,满足
解不等式组,其解集为
所以
12.(本小题满分10分)选修4-5:不等式选讲
如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.
(1)将y表示成x的函数;
(2)要使y的值不超过70,x 应该在什么范围内取值?
(24)解:
(Ⅰ)
(Ⅱ)依题意,x满足
{
解不等式组,其解集为[9,23]
所以
11.(2009宁夏海南卷理)请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。
(2009宁夏海南卷理)本小题满分10分)选修4-1:几何证明选讲
如图,已知的两条角平分线和相交于H,,F在上,
且。
(I) 证明:B,D,H,E四点共圆:
(II) 证明:平分。
(22)解:
(Ⅰ)在△ABC中,因为∠B=60°,
所以∠BAC+∠BCA=120°.
因为AD,CE是角平分线,
所以∠HAC+∠HCA=60°,
故∠AHC=120°.
于是∠EHD=∠AHC=120°.
因为∠EBD+∠EHD=180°,
所以B,D,H,E四点共圆.
(Ⅱ)连结BH,则BH为∠ABC的平分线,得∠HBD=30°
由(Ⅰ)知B,D,H,E四点共圆,
所以∠CED=∠HBD=30°.
又∠AHE=∠EBD=60°,由已知可得EF⊥AD,
可得∠CEF=30°.
所以CE平分∠DEF.
(23)(本小题满分10分)选修4-4:坐标系与参数方程。
已知曲线C: (t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。
(23)解:
(Ⅰ)
为圆心是(,半径是1的圆.
为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.
(Ⅱ)当时,
为直线
从而当时,
10.(本小题满分10分)选修4-5:不等式选讲
设函数。
(1) 若解不等式;
(2)如果,,求 的取值范围。
(24)解:
(Ⅰ)当a=-1时,f(x)=︱x-1︳+︱x+1︳.
由f(x)≥3得
︱x-1︳+︱x+1|≥3
(ⅰ)x≤-1时,不等式化为
1-x-1-x≥3 即-2x≥3
9.(2009辽宁卷理)请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。
(2009辽宁卷理)(本小题满分10分)选修4-1:几何证明讲
已知 ABC 中,AB=AC, D是 ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E。
(1) 求证:AD的延长线平分CDE;
(2) 若BAC=30,ABC中BC边上的高为2+,求ABC外接圆的面积。
(22)解:
(Ⅰ)如图,设F为AD延长线上一点
∵A,B,C,D四点共圆,
∴∠CDF=∠ABC
又AB=AC ∴∠ABC=∠ACB,
且∠ADB=∠ACB, ∴∠ADB=∠CDF,
对顶角∠EDF=∠ADB, 故∠EDF=∠CDF,
即AD的延长线平分∠CDE.
(Ⅱ)设O为外接圆圆心,连接AO交BC于H,则AH⊥BC.
连接OC,A由题意∠OAC=∠OCA=150, ∠ACB=750,
∴∠OCH=600.
设圆半径为r,则r+r=2+,a得r=2,外接圆的面积为4。
8.(2009福建卷理)本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,
(1)(本小题满分7分)选修4-4:矩阵与变换
已知矩阵M所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标
(2)(本小题满分7分)选修4-4:坐标系与参数方程
已知直线l:3x+4y-12=0与圆C: (为参数 )试判断他们的公共点个数
(3)(本小题满分7分)选修4-5:不等式选讲
解不等式∣2x-1∣<∣x∣+1
(2)解:圆的方程可化为.
其圆心为,半径为2.
(3)解:当x<0时,原不等式可化为
又不存在;
当时,原不等式可化为
又
当
综上,原不等式的解集为
7.C. 选修4 - 4:坐标系与参数方程
已知曲线C的参数方程为(为参数,).
求曲线C的普通方程。
6.B. 选修4 - 2:矩阵与变换
求矩阵的逆矩阵.
[解析] 本小题主要考查逆矩阵的求法,考查运算求解能力。满分10分。
解:设矩阵A的逆矩阵为则
即故
解得:,
从而A的逆矩阵为.
5.(2009江苏卷)[选做题]在A、B、C、D四小题中只能选做两题,每小题10分,共计20分。请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。
A.选修4 - 1:几何证明选讲
如图,在四边形ABCD中,△ABC≌△BAD.
求证:AB∥CD.
[解析] 本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力。满分10分。
证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CBA=∠CDB。再由△ABC≌△BAD得∠CAB=∠DBA。因此∠DBA=∠CDB,所以AB∥CD。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com