0  263492  263500  263506  263510  263516  263518  263522  263528  263530  263536  263542  263546  263548  263552  263558  263560  263566  263570  263572  263576  263578  263582  263584  263586  263587  263588  263590  263591  263592  263594  263596  263600  263602  263606  263608  263612  263618  263620  263626  263630  263632  263636  263642  263648  263650  263656  263660  263662  263668  263672  263678  263686  447090 

第一节:语法和词汇知识(共15小题;每小题1分,满分15分)

21. It’s clear that ________ little money he earns can hardly support ________ family as large as his.

Athe; a    Ba; the C.不填;a  D.不填;the

22. Children who have problems connecting letters with sounds or understanding what they read may be showing ______ of learning disabilities.

A. signs      B. examples      C. symbols       D. marks

23. Was it in the garden ______ we used to work in ______ the famous actors and actresses had a picnic?

A. that; where  B. which; that   C. where; that   D. which; where

24. She went to the bookstore and bought ___________.

A. dozen of books            B. several dozens books

C. several dozens of books      D. several dozen books

25. ----Henry has been teaching English in Beijing University for many years.

----It’s no ______ he can speak Chinese so well and idiomatically.

A. matter     B. doubt     C. problem       D. wonder

26. What will happen to the child if Jim and Mary ________?

A. break down        B. break up       C. break out      D. break off

27. It was _________ to be chosen as a torch bearer that he would never forget it.

A. so great honor  B. such great honor  C. so great an honor  D. such great an honor

28. He is a nice neighbor. He often helps us with garden work and is good at speech. ________ he is quite kind with people.

A. After all       B. Above all      C. First of all     D. In all

29. The thief ran away when the burglar alarm ________.

A. went up       B. went off       C. went out       D. went away

30. Most people think it acceptable to call others by their first name, but some consider it ________ to use first names without being invited to do so.

A. proper        B. properly   C. improper      D. improperly

31. ________ I could remember, I did return him the money.

A. As far as   B. As long as   C. As good as    D. As well as

32. Tom felt shocked when he saw his Aunty Polly standing in his room with her arms _______.

A. cross      B. crossing       C. crossed        D. to cross

33. The train goes at 8 o’clock. I’m afraid I can’t ________.

A. make it       B. take it     C. reach for it     D. catch up with it

34. I absolutely loved the film Angry Sky. The part _______ the hero returns home had me in floods of tears.

A. that      B. which     C. where     D. when

35. However hard I tried to think about it, what he said didn’t really __________to me.

A. figure out      B. make out   C. turn out    D. get across

试题详情

21. (本题满分14分)

已知函数f(x)=x2+bsinx-2,(b∈R), F(x)=f(x)+2, 且对于任意实数x,恒有F(x-5)=F(5-x).

(1)求函数f(x)的解析式;

(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调, 求实数a的取值范围;

(3)函数有几个零点?

解:(1)由题设得:F(x)=x2+bsinx,

∵F(x-5)=F(5-x),     

∴F(-x)=F(x)

∴x2-bsinx=x2+bsinx,

∴bsinx=0对于任意实数x都成立,∴b=0

∴f(x)=x2-2.

     (2) 由g(x)=f(x)+2(x+1)+alnx=x2+2x+alnx,

      得,

      g(x)在(0,1)上恒单调,只需在(0,1)上恒成立.      

      即  2x2+2x+a≥0或2x2+2x+a≤0在(0,1)上恒成立.

∴a≥-(2x2+2x)或a≤-(2x2+2x)在(0,1)上恒成立.

      设u(x)=-(2x2+2x), x∈(0,1),易知:u(x)∈(-4,0),

∴a≥0或a≤-4.

     (3) 令,

  ,

   令,列表如下:

x

-1
(-1,0)
0
(0,1)
1


+
0
-
0
+
0
-
y







∴当k>时,无零点;

当k<1或k=时,有两个零点;      

当k=1时,有三个零点;

时,有四个零点.

试题详情

20. (本题满分14分)已知函数.

(Ⅰ)若,求上的最大值与最小值;

(Ⅱ)设函数的图像关于原点对称,在点处的切线为与函数的图像交于另一点.若轴上的射影分别为,求的值.

(Ⅰ)若

x
-2
(-2,-1)
-1
(-1,2)
2
(2,4)
4

 
+
 
-
 
+
 
y
-1



-9

17

最大值为最小值为      

试题详情

19.(本题满分13分)为应对国际金融危机对企业带来的不良影响,2009年某企业实行裁员增效,已知现有员工a人,每人每年可创纯利润1万元。据评估,在生产条件不变的条件下,每裁员1人,则留岗员工每人每年可多创收0.01万元,但每年需付给下岗工人0.4万元生活费,并且企业正常运行所需人数不得少于现有员工的,设该企业裁员x人后纯收益为y万元.

(1)写出y关于x的函数关系式,并指出x的取值范围;

(2)当140<a≤280时,问企业裁员多少人,才能获得最大的经济效益?(注:在保证能获得最大经济效益的情况下,能少裁员,就尽量少裁)

解:(1)

,∴,即x的取值范围是

(2)

      当140<a≤280时,,∴当a为偶数时,x取,y取最大值;;

当a为奇数时,x取,y取最大值.      

∵尽可能少裁员,,∴x=,综上所述:当a为偶数时,应裁员,当a为奇数时,应裁员.

试题详情

18.  (本题满分13分)已知△ABC的面积S满足,且·=6,的夹角为.

(1)求的取值范围;     

(2)若函数f()=sin2+2sincos+3cos2,求f()的最小值,并指出取得最小值时的.

解:  (1)由题意知

 

由②÷①得=tanθ即3tanθ=S……(3分)

由3≤S≤3得3≤3tanθ≤3……(4分)

又θ为的夹角,∴θ∈(0,π)∴θ∈(,)……(6分)

(2)f(θ)=sin2θ+2sinθcosθ+3cos2θ=1+sin2θ+2cos2θ

∴f(θ)=2+sin2θ+cos2θ=2+sin(2θ+)……(9分)

∵θ∈(,),∴2θ+∈(, )     

∴2θ+=,即θ=时,f(θ) min= =……(13分)

试题详情

17. (本题满分13分)已知函数在点处取得极大值5,其导函数 的图象经过点(1,0),(2,0),如图所示, 求:(Ⅰ)的值; (Ⅱ)abc 的值.                                                              

y
 
                            (1)

 

2
 
1
 
o
 
x
 

x

1
(1,2)
2


-
0
+
0
-
y

 

 

(2)两根为1,2。

试题详情

16.(13分)已知△顶点的直角坐标分别为.

(1)若,求sin∠的值;  (2)若∠是钝角,求的取值范围.

解   (1) ,   当c=5时,

   进而

(2)若A为钝角,则ABAC= -3(c-3)+( -4)2<0   解得c>      

显然此时有ABAC不共线,故当A为钝角时,c的取值范围为[,+)

试题详情

13、    6       14、        15、   

试题详情

11、                 12、               

试题详情

21. (本题满分14分)

已知函数f(x)=x2+bsinx-2,(b∈R), F(x)=f(x)+2, 且对于任意实数x,恒有F(x-5)=F(5-x).

(1)求函数f(x)的解析式;

(2)已知函数g(x)=f(x)+2(x+1)+alnx在区间(0,1)上单调, 求实数a的取值范围;      

(3)函数有几个零点?

       厦外2010届高三数学第一阶段测试卷(第Ⅱ卷)2009年10月

试题详情


同步练习册答案