5、如图所示,一根轻弹簧上端固定,下端挂一质量为m1的箱子,箱中有一质量为m2的物体.当箱静止时,弹簧伸长L1,向下拉箱使弹簧再伸长L2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( )
A.. B..
C. D.
4、如图所示,A、B质量均为m,叠放在轻质弹簧上,当对A施加一竖直向下的力,大小为F,将弹簧压缩一段,而且突然撤去力F的瞬间,关于A的加速度及A、B间的相互作用力的下述说法正确的是( )
A、加速度为0,作用力为mg。 B、加速度为,作用力为
C、速度为F/m,作用力为mg+F D、加速度为,作用力为
3、如图所示,在一直立的光滑管内放置一轻质弹簧,上端O点与管口A的距离为2x0,一质量为m的小球从管口由静止下落,将弹簧压缩至最低点B,压缩量为x0,不计空气阻力,则( )
A.小球运动的最大速度大于2
B.小球运动中最大动能等于2mgx0
C.弹簧的劲度系数为mg/x0
D.弹簧的最大弹性势能为3mgx0
2、如图所示,、、为三个物块,M,N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( )
A.有可能N处于拉伸状态而M处于压缩状态
B.有可能N处于压缩状态而M处于拉伸状态
C.有可能N处于不伸不缩状态而M处于拉伸状态
D.有可能N处于拉伸状态而M处于不伸不缩状态
1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有 ( )
A.l2>l1 B.l4>l3 C.l1>l3 D.l2=l4
4、弹簧与能量问题
例4、A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).
(1)使木块A竖直做匀加速运动的过程中,力F的最大值
(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.
解:当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有
kx=(mA+mB)g,, x=(mA+mB)g/k ①
对A施加F力,分析A、B受力如图
对A F+N-mAg=mAa ②
对B kx′-N-mBg=mBa′ ③
可知,当N≠0时,AB有共同加速度a=a/,
由②式知欲使A匀加速运动,随N减小
F增大.当N=0时,F取得了最大值Fm,
即Fm=mA(g+a)=4.41 N
又当N=0时,A、B开始分离,由③式知此时,弹簧压缩量kx′=mB(a+g),x′=mB(a+g)/k ④
AB共同速度 v2=2a(x-x′) ⑤
由题知,此过程弹性势能减少了WP=EP=0.248 J
设F力功WF,对这一过程应用动能定理或功能原理
WF+EP-(mA+mB)g(x-x′)=½(mA+mB)v2 ⑥
联立①④⑤⑥,且注意到EP=0.248J,可知WF=9.64×10-2J
变式训练5、如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?已知重力加速度为g。
变式训练6、如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带为+QA和+QB的电荷量,质量分别为mA和mB。两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接轻质小钩。整个装置处于场强为E、方向水平向左的匀强电场中,A、B开始时静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B不会碰到滑轮。
(1)若在小钩上挂质量为M的物块C并由静止释放,可使物块A对挡板P的压力恰
为零,但不会离开P,求物块C下降的最大距离h
(2)若C的质量为2M,则当A刚离开挡板P时,B的速度多大?
专题实战热身:
3、弹簧的非平衡问题
例3、一弹簧秤的秤盘质量m1=1.5kg,盘内放一质量为m2=10.5kg的物体P,弹簧质量不计,其劲度系数为k=800N/m,系统处于静止状态,如图所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2s内F是变化的,在0.2s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2)
解析: 因为在t=0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘。此时P受到盘的支持力为零,由于盘的质量m1=1.5kg,所以此时弹簧不能处于原长。设在0~0.2s这段时间内P向上运动的距离为x,对物体P受力分析,根据牛顿第二定律可得: F+FN-m2g=m2a,
对于盘和物体P整体应用牛顿第二定律可得:
,
令FN=0,并由上述二式求得,而,
所以求得a=6m/s2,
当P开始运动时拉力最小,此时对盘和物体P整体有Fmin=(m1+m2)a=72N,
当P与盘分离时拉力F最大,Fmax=m2(a+g)=168N。
变式训练3、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。如图所示。现让木板由静止开始以加速度a(a<g=匀加速向下移动。求经过多长时间木板开始与物体分离。
变式训练4、如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。系统处一静止状态,现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d,重力加速度为g。
2、弹簧与平衡问题
例题2、如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________。
解析:本题中有两个关键性词语应予重视:“轻质”弹簧--即不计弹簧质量;“缓慢地”竖直上提--即系统动能无变化,且上提过程中系统受合力始终为零。
根据题意画图如右所示。上提前弹簧k1被压缩,弹簧k2被压缩,于是有:
上提后,弹簧k2刚脱离地面,已恢复原长,不产生弹力,则此时m2仅受到上面弹簧的拉力和重力,于是上面的弹簧k1是拉伸的,其形变量为:
由上面的计算可得:物块2的重力势能增加了为:
物块1的重力势能增加了
变式训练2、如图所示,质量为m的小球用水平弹簧系住,并用倾角为300的光滑木板斜托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度为
A.O
B.大小为,方向竖直向下
C.大小为,方向垂直于木板向下
D.大小为,方向水平向左
1、弹簧弹力瞬时问题
例1、如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A、B、C的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是aA=____ ,aB=____
解析; 由题意可设A、B、C的质量分别为m、2m、3m
以木块A为研究对象,抽出木块C前,木块A受到重力和弹力一对平衡力,抽出木块C的瞬时,木块A受到重力和弹力的大小和方向均没变,故木块A的瞬时加速度为0
以木块AB为研究对象,由平衡条件可知,木块C对木块B的作用力FcB=3mg
以木块B为研究对象,木块B受到重力、弹力和FcB三力平衡,抽出木块C的瞬时,木块B受到重力和弹力的大小和方向均没变,FcB瞬时变为0,故木块C的瞬时合外力为竖直向下的3mg。瞬时加速度为1.5g
变式训练1、如图(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度.
(1)下面是某同学对该题的一种解法:
解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡:
T1cosθ=mg,T1sinθ=T2,T2=mgtanθ
剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=gtanθ,方向在T2反方向
你认为这个结果正确吗?请对该解法作出
评价并说明理由.
变式训练1、解:(1)结果不正确.因为l2被剪断的瞬间,l1上张力的大小发生了突变,此瞬间T2=mg cosθ,
a=g sinθ
(2)结果正确,因为l2被剪断的瞬间、弹簧l1的长度不能发生突变、T1的大小和方向都不变.
3、在求弹簧的弹力做功时,往往结合动能定理和功能关系以及能量转化和守恒定律求解。
典型示例迁移
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com