3.体会函数与方程的内在联系,初步建立用函数方程思想解决问题的思维方式.
[课堂互动]
自学评价
2.根据具体的函数图象,能够用二分法求相应方程的近似解;
1.了解函数的零点与方程根的关系;
2.5.3 函数与方程小结与复习
[学习导航]
学习要求
4.已知函数
⑴试求函数的零点;
⑵是否存在自然数,使?若存在,求出,若不存在,请说明理由.
答案:(1)函数的零点为;
(2)计算得,,
由函数的单调性,可知不存在自然数,使成立.
学生质疑 |
|
教师释疑 |
|
3.已知函数,在上存在,使,则实数的取值范围是_________________.
2.方程的两个根分别在区间和内,则的取值范围是;
例4:二次函数中实数、、满足,其中,求证:
(1));
(2)方程在内恒有解.
分析:本题的巧妙之处在于,第一小题提供了有益的依据:是区间 内的数,且,这就启发我们把区间 划分为(,)和(,)来处理.
[解](1)
,
由于是二次函数,故,又,所以,.
⑵ 由题意,得, .
①当时,由(1)知
若,则,又,所以 在(,)内有解.
若,则
,又,所以在(,)内有解.
②当时同理可证.
点评:(1)题目点明是“二次函数”,这就暗示着二次项系数.若将题中的“二次”两个字去掉,所证结论相应更改.
(2)对字母、分类时先对哪个分类是有一定讲究的,本题的证明中,先对分类,然后对分类显然是比较好.
追踪训练二
1.若方程在内恰有一则实数的取值范围是 (B )
A. B.
C. D.
4. 已知二次函数和一次函数,其中,且,
(1)求证:两函数、的图象交于不同两点、;
(2)求线段在轴上投影长度的取值范围.
答案:(1)∵,,∴,.由 得,
因为.
所以两函数、的图象必交于不同的两点;
(2)设,,则 .∵,,∴.
∴(,).
3.不等式对一切实数都立,则的取值范围是.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com