2.已知一个函数的解析式为,它的 值域为,这样的函数有多少个?试写出其中两个函数.
答案:无数个,如定义域为,等。
学生质疑 |
|
教师释疑 |
|
例4: 已知,求函数的解析式。
[解]
(答案:)
例5.已知一个函数的解析式为,它的值域为,这样的函数有多少个?试写出其中两个函数。
[解]
思维点拨
解决例5这类问题,可以先写出自己熟悉的一个函数,然后再改变定义域。如本题可先写出满足条件的函数,注意到函数图象关于轴对称,设是的任意一个子集,则形如的函数都满足条件。
追踪训练二
1. 已知,则的解析式为
。
例4: 夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量相关.小李到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧。可小李马上说,你不仅没少要,反而多收了我的钱。当小李讲出理由,店主只好承认了错误,照实收了钱.
同学们,你知道小李是怎样知道店主坑人的吗?其实这样的数学问题在我们身边有很多,只要你注意观察,积累,并学以致用,就能成为一个聪明人,因为数学可以使人聪明起来.
[解]若西瓜重9斤以下则最多应付4.5元,若西瓜重9斤以上,则最少也要5.4元,不可能出现5.1元这样的价钱,所以店主坑人了.
学生质疑 |
|
教师释疑 |
|
例4: 已知函数,利用函数图象分别求它在下列区间上的值域:
(1); (2); (3).
[解]
(1);
(2);
(3).
例5.集合与集合相同吗?请说明理由.
[解]不相等.集合是坐标平面内的一个点集,表示函数的图象;集合是一个数集,表示函数的值域.
思维点拨
利用二次函数的图象求函数值域,作图时必须抓住以下关键点:抛物线的开口方向、对称轴、顶点以及区间的端点;解决集合问题,首先必须弄清集合中的元素是什么.
追踪训练二
1.已知函数,
(1)若,试比较与的大小;
(2)若定义域和值域都是,试求的值.
解(1),作出函数的图象,可知,当时,;
(2)由图象可知,当定义域是时,其值域应为,又已知的值域是,且,所以,即,解得或,又,所以.
学生质疑 |
|
教师释疑 |
|
1.某电脑公司在甲乙两地各有一个分公司,甲分公司现有电脑台,乙分公司现有同一型号 的电脑台.现地某单位向该公司购买该型号的电脑台,地某单位向该公司购买该型号的电脑台.已知甲地运往、两地每台电脑的运费分别是元和元,乙地运往、两地每台电脑的运费分别是元和元.
(1)设甲地调运台至地,该公司运往和两地的总运费为元,求关于的函数关系式.
(2)若总运费不超过元,问能有几种调运方案?
(3)求总运费最低的调运方案及最低运费.
分析:本题的关键在于表示出、两地的电脑台数,再用函数单调性求最低运费.
[解](1)设甲地调运台至地,则剩下台电脑调运到地;乙地应调运台电脑至地,运往地
台电脑
.则总运费
,
.
(2)若使,即,得
又,
.,即能有种调运方案.
(3)是上的增函数,又,时,有最小值为.
所以,从甲地运台到地,从乙地运台到地、运台到地,运费最低为元.
点评:本例题属于经费预算问题,其数学模型表现为一次函数模型求最值的问题.
3
[师生互动]
学生质疑 |
|
教师释疑 |
|
高考热点1. (2001上海,12)根据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一.图2-6中(1)表示我国土地沙化总面积在上个世纪五六十年代、七八十年代、九十年代的变化情况.由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在图1中(2)中图示为:
[解]如图2所示.
解:由图中的沙化面积可以利用=平均面积.因为题中是分了五六十年代、六七十年代、九十年代三段.
所以可分别求出三段的平均面积
,
2.如图,河流航线长,工厂位于码头正北处,原来工厂所需原料需由码头装船沿水路到码头后,再改陆运到工厂,由于水运太长,运费颇高,工厂与航运局协商在段上建一码头,并由码头到工厂修一条新公路,原料改为按由到再到的路线运输,设,每吨的货物总运费为元,已知每吨货物每千米运费水路为元,陆路为元.
(1)试写出元关于的函数关系式;
(2)要使运费最省,码头应建在何处?
分析:①.总运费元水路运费陆路运费
②.水路运费元,陆路长度
可以勾股定理求
得:
陆路运费
(元).
③.建立此问题的函数模型:
.
对于问题(2)我们可以利用求函数值域的方法求得运费最省时,点的位置.
以上建立实际问题的函数模型均是在弄清题意的基础上,根据几何、物理等相关的知识建立的函数模型
思维点拔:
一次函数求最值主要是利用它的单调性;函数在上的最值:当时,时有最小值,时有最大值;当时, 时有最大值,时有最小值
二次函数求最值也是利用它的单调性,一般都先配方.而求最值都要考虑取最值的条件.
追踪训练二
2.一个圆柱形容器的底部直径是,高是,现在以/的速度向容器内注入某种溶液,求容器内溶液的高度与注入溶液的时间之间的函数关系式,并写出函数的定义域.
解:
本节学习疑点:如何根据题意建立恰当的函数模型来解决实际问题.
[师生互动]
学生质疑 |
|
教师释疑 |
|
高考热点1: (2002年高考上海文,理16)一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图所示,图(1)表示某年个月中每月的平均气温.图(2)表示某家庭在这年个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )
A.气温最高时,用电量最多
B.气温最低时,用电量最少
C.当气温大于某一值时,用电量随气温增高而增加
D.当气温小于某一值时,用电量随气温渐低而增加
答案:C
分析:该题考查对图表的识别和理解能力.
[解]经比较可发现,月份用电量最多,而月份气温明显不是最高.因此项错误.同理可判断出项错误.由、、三个月的气温和用电量可得出项正确.
思维点拔:
数学应用题的一般求解程序
(1)审题:弄清题目意,分清条件和结论,理顺数量关系;
(2)建模:将题目条件的文字语言转化成数学语言,用数学知识建立相应的数学模型;
(3)解模:求解数学模型,得到数学结论;
(4)结论:将用数学方法得到的结论还原为实际问题的意义,并根据题意下结论.
追踪训练二
1. 有一块半径为的半圆形钢板,计划剪裁成等腰梯形的形状,它的下底是⊙O的直径,上底的端点在圆周上,写出这个梯形周长和腰长间的函数关系式,并求出它的定义域.
分析:关键是用半径与腰长表示上底,由对称性:,故只要求出.
解:设腰长,作垂足为, 连结,则,∴∽,
∴,,
∴
∴周长
,
∵是圆内接梯形
∴,
即,解得,
即函数的定义域为
8.判断方程(其中)在区间内是否有解.
答案:有解.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com