20、(本小题满分16分)
设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质; (ii)求函数的单调区间。
(2)已知函数具有性质。给定设为实数,
,,且,
若||<||,求的取值范围。
[解析] 本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分。
(1)(i)
∵时,恒成立,
∴函数具有性质;
(ii)(方法一)设,与的符号相同。
当时,,,故此时在区间上递增;
当时,对于,有,所以此时在区间上递增;
当时,图像开口向上,对称轴,而,
对于,总有,,故此时在区间上递增;
(方法二)当时,对于,
所以,故此时在区间上递增;
当时,图像开口向上,对称轴,方程的两根为:,而
当时,,,故此时在区间 上递减;同理得:在区间上递增。
综上所述,当时,在区间上递增;
当时,在上递减;在上递增。
(2)(方法一)由题意,得:
又对任意的都有>0,
所以对任意的都有,在上递增。
又。
当时,,且,
综合以上讨论,得:所求的取值范围是(0,1)。
(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。
①当时,有,
,得,同理可得,所以由的单调性知、,
从而有||<||,符合题设。
②当时,,
,于是由及的单调性知,所以||≥||,与题设不符。
③当时,同理可得,进而得||≥||,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)。
数学Ⅱ(附加题)
19、(本小题满分16分)
设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。
(1)求数列的通项公式(用表示);
(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。
[解析] 本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力。满分16分。
(1)由题意知:,
,
化简,得:
,
当时,,适合情形。
故所求
(2)(方法一)
, 恒成立。
又,,
故,即的最大值为。
(方法二)由及,得,。
于是,对满足题设的,,有
。
所以的最大值。
另一方面,任取实数。设为偶数,令,则符合条件,且。
于是,只要,即当时,。
所以满足条件的,从而。
因此的最大值为。
18、(本小题满分16分)
在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
[解析] 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。
(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。
由,得 化简得。
故所求点P的轨迹为直线。
(2)将分别代入椭圆方程,以及得:M(2,)、N(,)
直线MTA方程为:,即,
直线NTB 方程为:,即。
联立方程组,解得:,
所以点T的坐标为。
(3)点T的坐标为
直线MTA方程为:,即,
直线NTB 方程为:,即。
分别与椭圆联立方程组,同时考虑到,
解得:、。
(方法一)当时,直线MN方程为:
令,解得:。此时必过点D(1,0);
当时,直线MN方程为:,与x轴交点为D(1,0)。
所以直线MN必过x轴上的一定点D(1,0)。
(方法二)若,则由及,得,
此时直线MN的方程为,过点D(1,0)。
若,则,直线MD的斜率,
直线ND的斜率,得,所以直线MN过D点。
因此,直线MN必过轴上的点(1,0)。
17、(本小题满分14分)
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。
(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;
(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?
[解析] 本题主要考查解三角形的知识、两角差的正切及不等式的应用。
(1),同理:,。
AD-AB=DB,故得,解得:。
因此,算出的电视塔的高度H是124m。
(2)由题设知,得,
,(当且仅当时,取等号)
故当时,最大。
因为,则,所以当时,-最大。
故所求的是m。
16、(本小题满分14分)
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离。
[解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。
(1)证明:因为PD⊥平面ABCD,BC平面ABCD,所以PD⊥BC。
由∠BCD=900,得CD⊥BC,
又PDDC=D,PD、DC平面PCD,
所以BC⊥平面PCD。
因为PC平面PCD,故PC⊥BC。
(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:
易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。
又点A到平面PBC的距离等于E到平面PBC的距离的2倍。
由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,
因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。
易知DF=,故点A到平面PBC的距离等于。
(方法二)体积法:连结AC。设点A到平面PBC的距离为h。
因为AB∥DC,∠BCD=900,所以∠ABC=900。
从而AB=2,BC=1,得的面积。
由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积。
因为PD⊥平面ABCD,DC平面ABCD,所以PD⊥DC。
又PD=DC=1,所以。
由PC⊥BC,BC=1,得的面积。
由,,得,
故点A到平面PBC的距离等于。
15、(本小题满分14分)
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足()·=0,求t的值。
[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。满分14分。
(1)(方法一)由题设知,则
所以
故所求的两条对角线的长分别为、。
(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:
E为B、C的中点,E(0,1)
又E(0,1)为A、D的中点,所以D(1,4)
故所求的两条对角线的长分别为BC=、AD=;
(2)由题设知:=(-2,-1),。
由()·=0,得:,
从而所以。
或者:,
14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是____▲____。
[解析] 考查函数中的建模应用,等价转化思想。一题多解。
设剪成的小正三角形的边长为,则:
(方法一)利用导数求函数最小值。
,
,
当时,递减;当时,递增;
故当时,S的最小值是。
(方法二)利用函数的方法求最小值。
令,则:
故当时,S的最小值是。
13、在锐角三角形ABC,A、B、C的对边分别为a、b、c,,则=____▲_____。
[解析] 考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。
(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。
当A=B或a=b时满足题意,此时有:,,,
,= 4。
(方法二),
由正弦定理,得:上式=
12、设实数x,y满足3≤≤8,4≤≤9,则的最大值是 ▲ 。
[解析] 考查不等式的基本性质,等价转化思想。
,,,的最大值是27。
11、已知函数,则满足不等式的x的范围是__▲___。
[解析] 考查分段函数的单调性。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com