6.若曲线的一条切线l与直线垂直,则l的方程为 ( )
A. B.
C. D.
5.在空间四边形ABCD中,在AB、BC、DC、DA上分别取E、F、G、H四点,如果GH、EF交于一点P,则 ( )
A.P一定在直线BD上
B.P一定在直线AC上
C.P在直线AC或BD上
D.P既不在直线BD上,也不在AC上
4.从某班学生中任意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175]cm的概率为0.5,那么该同学的身高超过175cm的概率为 ( )
A.0.8 B.0.7 C.0.3 D.0.2
3.若的解析式为 ( )
A.3 B. C. D.
2.复数= ( )
A. B. C. D.
1.已知集合I={1,2,3,4},A={1},B={2,4},则= ( )
A.{1} B.{3} C.{1,3} D.{1,2,3}
21.(本小题共12分)
已知函数,满足:①对任意,都有;
②对任意n∈N *都有.
(Ⅰ)试证明:为上的单调增函数;
(Ⅱ)求;
(Ⅲ)令,试证明:
20.(本小题满分12分)
函数关于直线对称的函数为,又函数的导函数为,记.
(Ⅰ)设曲线在点处的切线为, 与圆相切,求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)求函数在[0,1]上的最大值.
19.(本题满分12分)
如图,已知椭圆的右焦点为F,过F的直线(非x轴)交椭圆于M、N两点,右准线交x轴于点K,左顶点为A.
(Ⅰ)求证:KF平分∠MKN;
(Ⅱ)直线AM、AN分别交准线于点P、Q,
设直线MN的倾斜角为,试用表示
线段PQ的长度|PQ|,并求|PQ|的最小值.
18.(本小题满分13分)
如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB.D、E分别为棱C1C、B1C1的中点.
(Ⅰ)求A1B与平面A1C1CA所成角的大小;
(Ⅱ)求二面角B-A1D-A的大小;
(Ⅲ)试在线段AC上确定一点F,使得EF⊥平面A1BD.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com